Cauchy Functional Equation

1 Introduction

In this note, we shall prove that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the Cauchy functional equation

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$ and if f is Lebesgue measurable, then $f(x)=x f(1)$ for all $x \in \mathbb{R}$. We may easily observe that the Cauchy functional equation is equivalent to \mathbb{Q}-linearity, and so we know $f(x)=x f(1)$ for all $x \in \mathbb{Q}$ even if f may not be Lebesgue measurable.

The first volume of Fundamenta Mathematicae contains two papers, each written by Sierpiński and by Banach, that give completely different proofs of this theorem.

In what follows, the Lebesgue measure will be denoted by μ.

2 Proof by Banach

Theorem 2.1. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the Cauchy functional equation and is Lebesgue measurable, then $f(x)=x f(1)$ for all $x \in \mathbb{R}$.

Proof. Notice first that it suffices to prove that for every $\varepsilon>0$ there exists $\delta>0$ such that $|f(h)|<\varepsilon$ for all $h \in(0, \delta)$. This is because it implies the continuity of f at 0 , from which we may infer the continuity of f.

Let $\varepsilon>0$ be given. Since f is Lebesgue measurable, Lusin's theorem allows us to find a closed set $F \subset[0,1]$ with $\mu(F) \geqq 2 / 3$ on which f is continuous. As f is uniformly continuous on F, there exists $\delta \in(0,1 / 3)$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in F$ and $|x-y|<\delta$. Let $h \in(0, \delta)$. If F and $F-h=\{x-h \mid x \in F\}$ were disjoint, then we would have

$$
1+h=\mu([-h, 1]) \geqq \mu(F \cup(F-h))=\mu(F)+\mu(F-h) \geqq 4 / 3,
$$

which contradicts $h<\delta<1 / 3$. So we may take a point $x_{0} \in F \cap(F-h)$, and we see that $\left|f\left(x_{0}\right)-f\left(x_{0}+h\right)\right|<\varepsilon$, that is, $|f(h)|<\varepsilon$.

3 Proof by Sierpiński

Lemma 3.1. If $A, B \subset \mathbb{R}$ have positive Lebesgue measure, then there exist $a \in A$ and $b \in B$ such that $a-b \in \mathbb{Q}$.

Proof. We may assume that A and B are bounded. By an interval we shall mean a compact nondegenerate interval. Take an interval I containing B, and choose $\varepsilon>0$ less than $\mu(A) \mu(B) / 3 \mu(I)$.

First we claim that there exists an interval J with rational endpoints of length less than $\mu(I)$ satisfying

$$
\mu(A \cap J)>\frac{\mu(A)}{\mu(A)+\varepsilon} \mu(J) .
$$

Suppose that such J does not exist. Choose intervals J_{1}, J_{2}, \ldots with rational endpoints of length less than $\mu(I)$ so that $\bigcup_{j=1}^{\infty} J_{j} \supset A$ and $\sum_{j=1}^{\infty} \mu\left(J_{j}\right)<\mu(A)+\varepsilon$. Then, by assumption and $\mu(A)>0$, we obtain

$$
\mu(A)=\mu\left(\bigcup_{j=1}^{\infty}\left(A \cap J_{j}\right)\right) \leqq \sum_{j=1}^{\infty} \mu\left(A \cap J_{j}\right) \leqq \frac{\mu(A)}{\mu(A)+\varepsilon} \sum_{j=1}^{\infty} \mu\left(J_{j}\right)<\mu(A)
$$

a desired contradiction. Thus the claim has been proved.
Let S denote the set of all integers n for which $J+n \mu(J)$ meets I. We put $s=\# S$, keeping in mind that S is finite. Then we have $(s-2) \mu(J) \leqq \mu(I)$, and so $s \mu(J) \leqq \mu(I)+2 \mu(J)<$ $3 \mu(I)$. If B and $\bigcup_{n \in S}((A \cap J)+n \mu(J))$ were disjoint, then we would have

$$
\begin{aligned}
s \mu(J) & =\mu\left(\bigcup_{n \in S}(J+n \mu(J))\right) \geqq \mu(B)+\mu\left(\bigcup_{n \in S}((A \cap J)+n \mu(J))\right) \\
& =\mu(B)+s \mu(A \cap J)>\mu(B)+s \frac{\mu(A)}{\mu(A)+\varepsilon} \mu(J),
\end{aligned}
$$

which implies $\mu(B)<s \varepsilon \mu(J) /(\mu(A)+\varepsilon)<3 \varepsilon \mu(I) / \mu(A)$, contradicting the choice of ε. Accordingly we may take a point $b \in B \cap \bigcup_{n \in S}((A \cap J)+n \mu(J))$. Since $\mu(J) \in \mathbb{Q}$, the point b is of rational distance from some point $a \in A \cap J$.

Theorem 3.2. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies the Cauchy functional equation and is Lebesgue measurable, then $f(x)=x f(1)$ for all $x \in \mathbb{R}$.
Proof. Set $g(x)=f(x)-x f(1)$. Then g is also \mathbb{Q}-linear and $g(x)=0$ for all $x \in \mathbb{Q}$. What we need to show is that $g(x)=0$ for all $x \in \mathbb{R}$.

Set $A=\{x \in \mathbb{R} \mid g(x)>0\}$ and $B=\{x \in \mathbb{R} \mid g(x)<0\}$. Since $x \longmapsto-x$ is a bijection between A and B, these two sets have the same Lebesgue measure. If $\mu(A)=\mu(B)>0$, then the lemma would contradict the fact that $g(x)=g(y)$ whenever $x-y \in \mathbb{Q}$. Consequently we have $\mu(A)=\mu(B)=0$ and so $g^{-1}(0)$ is conull.

If there were a point $a \in \mathbb{R}$ with $g(a) \neq 0$, then the set of all $x \in \mathbb{R}$ with $g(x-a)=0$ would be a conull set contained in the null set $A \cup B$, which is absurd. Hence such a does not exist.

References

[1] S. Banach, Sur l'équation fonctionnelle $f(x+y)=f(x)+f(y)$, Fundamenta Mathematicae, 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1115.pdf.
[2] W. Sierpiński, Sur l'équation fonctionnelle $f(x+y)=f(x)+f(y)$, Fundamenta Mathematicae, 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1114.pdf.

