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I:=10,1].
C(I):={f: I — R| f is continuous}.
Equip C(I) with the sup norm.
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I:=10,1].
C(I):={f: I — R| f is continuous}.
Equip C(I) with the sup norm.

Definition

A typical (= generic) f € C(I) has property P
(written V*f € C(I) P)
PN {f € C(I) | f has property P} is residual.
residual = comeagre = complement is meagre

meagre = first category

= countable union of nowhere dense sets



V*f € C(I) f is nowhere differentiable.



V*f € C(I) f is nowhere differentiable.
fly) — f(=)

y—r Y — T

f'(z) = lim does not exist at any z.



Example

V*f € C(I) f is nowhere differentiable.

fl(z) = %E;Lj;(x) does not exist at any x.
What about !
Df(z) = limsup M,
Yy—T Yy—
Df(z) = lim it W) = f(),

y—w y—x

o 5



Theorem (Jarnik, 1933)

VifeC(I)Vz €I Df(z) = o0, Df(x) = —c0.



Theorem (Jarnik, 1933)

VifeC(I)Vz €I Df(z) = o0, Df(x) = —c0.

What about Dini derivatives
D* f(z) = limsup fw-r@)

yla y—r

D, f(z) =lim infw’
ylz Yy

D™ f(x) = limsup f(y;;c(w),
ytz

D_f(z) =lim infw?
ytw Yy

=] 5



Is it true that
VifeC(l) Ve el

D" f(x)
D, f(z)

D™ f(x) = oo,
D_f(x) = ~oo?
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Is it true that
VifeC(l) Ve el

D" f(x)
D, f(z)

D™ f(x) = oo,
D_f(x) = ~oo?

No!
There is no such f.
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Is it true that
VifeCl)Veel

D* f(z)
D, f(x)

D™ f(z) = oo,
D_f(x) = —o0?

No!

There is no such f.

For, if f attains its maximum at a € I, then
D*f(a) <0and D_f(a) > 0.

o F = = £ DA



A point z € I is a knot point of f € C(I) if

D* f(2) =D~ f(z) =00, D f(z) = D f(w) = —oc.



A point z € I is a knot point of f € C(I) if

D* f(2) =D~ f(z) =00, D f(z) = D f(w) = —oc.

hf € C(I) Ve €I xis a knot point of f.



Definition
A point z € I is a knot point of f € C(I) if

D* f(2) =D~ f(z) =00, D f(z) = D f(w) = —oc.

hf € C(I) Ve €I xis a knot point of f.
Nevertheless, it turns out that
V*f € C(I) ‘most’ points are knot points of f.



Theorem (Jarnik, 1933)

V*f e C(I)

almost every x € I is a knot point of f.



Theorem (Jarnik, 1933)

V*f e C(I)

almost every x € I is a knot point of f.

In other words, setting
N(f)={x €1I]|xis NOT a knot point of f},
we have
V*f e C(I) N(f) is Lebesgue null.



Theorem (Jarnik, 1933)

V*f e C(I)

almost every x € I is a knot point of f.

In other words, setting
N(f)={x €1I]|xis NOT a knot point of f},
we have
V*f e C(I) N(f) is Lebesgue null.

How small is N(f) for a typical f € C(I)?



Theorem (Preiss and Zajicek, unpublished)

For a o-ideal Z on I, T.F.A.E.:
(1) V*f e C(I) N(f) eZ;
(2) ZN K is residual in K (i.e. VK € K K € I).

Here K = {K C I | K is closed (= compact)}
with the Hausdorff metric (Vietoris topology).



Theorem (Preiss and Zajitek, unpublished)

For a o-ideal Z on I, T.F.A.E.:
(1) V*f e C(I) N(f) eZ;
(2) ZN K is residual in K (i.e. VK € K K € I).

Here K = {K C I | K is closed (= compact)}
with the Hausdorff metric (Vietoris topology).

Example

V¥f € C(I) N(f) is meagre, dimg N(f) =0, etc.



Characterise S C P(I) s.t. V*f € C(I) N(f) € S.



Characterise S C P(I) s.t. V*f € C(I) N(f) € S.

Observe that N(f) is F, (= 39) for every feC(I).



Characterise S C P(I) s.t. V*f e C(I) N(f) € S.
Observe that N(f) is F, (= 39) for every feC(I).

Characterise F C F, s.t. V*f € C(I) N(f) € F.




Theorem (Preiss and S.)

For F C F,, T.F.AE.:
(1) V*f e C(I) N(f) e F;
(2) V¥(K,) e KN U2, K, € F.

(2) means that the inverse image of F under the
surjection

KN — Fi (Kp) — U2, Ky,

is residual.



Q) V(K. U- K,eF = (1)¥V'f N(f)eF




Q) V(K. U- K,eF = (1)¥V'f N(f)eF
A:={(K,) e KN| U, K, € F}: residual in KV
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Q) V(K. U- K,eF = (1)¥V'f N(f)eF

A:={(K,) e KN| U, K, € F}: residual in KV
To show: {f € C(I) | N(f) € F} is residual.
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Q) V(K. U- K,eF = (1)¥V'f N(f)eF
A:={(K,) e KN| U, K, € F}: residual in KV
To show: {f € C(I) | N(f) € F} is residual.

Suffices to show:
{feCc(I)|3(K,)eAN(f)=U,~; K.} is residual.
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Q) V(K. U- K,eF = (1)¥V'f N(f)eF

A:={(K,) e KN| U, K, € F}: residual in KV
To show: {f € C(I) | N(f) € F} is residual.
Suffices to show:
{feCc(I)|3(K,)eAN(f)=U,~; K.} is residual.
This is possible by constructing a very complicated
winning strategy in a Banach-Mazur game.

(3 winning strategy in BM-game <= residuality)




Q) V(K. U- K,eF = (1)¥V'f N(f)eF

A:={(K,) e KN| U, K, € F}: residual in KV
To show: {f € C(I) | N(f) € F} is residual.
Suffices to show:
{feCc(I)|3(K,)eAN(f)=U,~; K.} is residual.
This is possible by constructing a very complicated
winning strategy in a Banach-Mazur game.

(3 winning strategy in BM-game <= residuality)
But the converse appears to be difficult to prove by
the same method.




Lemma

IX c KN x C(I) s.t.
(A) ((Kn), f) €X = Upli Kn = N(f);
(B) A C KN is residual
= V'feC()IK,) €A ((Kn),f)eX;
(C) X is analytic (= X7) in KN x C(I);

(D) one more condition (specified later).



Lemma

IX c KN x C(I) s.t.
(A) ((Kn), f) €X = Upli Kn = N(f);
(B) A C KN is residual
= V'feC()IK,) €A ((Kn),f)eX;
(C) X is analytic (= X7) in KN x C(I);

(D) one more condition (specified later).

We define X in a (complicated but) explicit way.
Use the BM-game to show (B) (hardest part in the
whole proof).
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Q) V(K. U  K,eF = (1)YV'f N(f)eF
A:={(K,) e KN| U, K, € F}: residual in KV
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() U KneF = (YV'f N(f)eF

2) € KN UL, K, € F}: residual in €N,
‘feC) 3K, eA (K, f)eX



Q) V(K. U  K,eF = (1)YV'f N(f)eF

A:={(K,) e KN| U, K, € F}: residual in KV
By (B), V*f € C(I) 3(K,) € A ((Kn), f) €X
Ve C(3I(K,) € AU K, = N(f) by (A).
SV feC(I) N(f) € F by def of A. [
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O vf NHeF = @V (K) Uy KneF

{feC()| N(f) e F} is residual.
Take a dense G5 set G C {f € C(I) | N(f) € F}.
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O vf NHeF = @V (K) Uy KneF

{feC()| N(f) e F} is residual.
TakeadenseG5 set G C{feC()|N(f)eF}.
A:={(K,) e K" |3feG ((Kn),f)eX}.




(L) V'f N(f) e F = (2)V(K,) U K,€F

{feC(I)| N(f) € F} is residual.

Take adense Gsset G C {f € C(I) | N(f) € F}.
A:={(K,) e KN |3f e G ((Kn),f)eX}.

Observe that (Kn) e A = U2 K, €F.

Suffices to show that A is residual.
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(L) V'f N(f) e F = (2)V(K,) U K,€F

{feC(I)| N(f) € F} is residual.

Take a dense G5 set G C {f € C(I) | N(f) € F}.

A:={(K,) e KN |3feqG ((K,),f)eX}.

Observe that (K,) e A = |J -, K, € F.

Suffices to show that A is residual.

A is nonmeagre.

For, if A is meagre, then applying (B) to A€ gives
VifeC(I)IK,) e A ((K,),f) eX

Sodf € G I(K,) € A° ((K.), f) €X

contradicting the def of A.

o F = = £ DA



Apply a topological 0-1 law to
A={(K,) e KN |3f e G ((K,),f)€X}.
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Apply a topological 0-1 law to
A={(K,) e KN |3f e G ((K,),f)€X}.

m A =prix (X N (KN x G)) is analytic,
hence having the Baire property;
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Apply a topological 0-1 law to
A={(K,) e KN |3f e G ((K,),f)€X}.
m A =prix (X N (KN x G)) is analytic,
hence having the Baire property;
8 A=Uee{(Kn) € K| ((K), f) € X}

IS invariant under finite permutatlons because
(D) Vf e C(I) {(K.) € KN|((K.),f) eX}

is invariant under finite permutations.



Apply a topological 0-1 law to
A={(K,) e KN |3f e G ((K,),f)€X}.
m A =prix (X N (KN x G)) is analytic,
hence having the Baire property;

n A= Ujea{(Kn) € K7 | ((K), f) € X}

IS invariant under finite permutatlons because
(D) Vf e C(I) {(K.) € KN|((K.),f) eX}

is invariant under finite permutations.

It follows that A is either meagre or residual.



Apply a topological 0-1 law to
A={(K,) e KN |3f e G ((K,),f)€X}.
m A =prix (X N (KN x G)) is analytic,
hence having the Baire property;
8 A=Uee{(Kn) € K| ((K), f) € X}

IS invariant under finite permutatlons because
(D) Vf e C(I) {(K.) € KN|((K.),f) eX}

is invariant under finite permutations.

It follows that A is either meagre or residual.
Since A is nonmeagre, A must be residual. [
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