Knot Points of Typical Continuous Functions

Shingo SAITO

Kyushu University

28 August 2008

Typical continuous functions

$$I := [0, 1].$$

Typical continuous functions

```
I:=[0,1]. C(I):=\{f\colon I\longrightarrow \mathbb{R}\mid f \text{ is continuous}\}. Equip C(I) with the sup norm.
```

Typical continuous functions

```
\begin{split} I &:= [0,1]. \\ C(I) &:= \{f \colon I \longrightarrow \mathbb{R} \mid f \text{ is continuous} \}. \\ \mathsf{Equip} \ C(I) \ \text{with the sup norm}. \end{split}
```

Definition

```
A typical (= generic) f \in C(I) has property P (written \forall^* f \in C(I) P)
\stackrel{\text{def}}{\Longleftrightarrow} \{f \in C(I) \mid f \text{ has property } P\} \text{ is residual.}
\text{residual} = \text{comeagre} = \text{complement is meagre}
\text{meagre} = \text{first category}
= \text{countable union of nowhere dense sets}
```

Properties of typical continuous functions

Example

 $\forall^* f \in C(I)$ f is nowhere differentiable.

Properties of typical continuous functions

Example

 $\forall^* f \in C(I)$ f is nowhere differentiable.

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$
 does not exist at any x .

Properties of typical continuous functions

Example

 $\forall^* f \in C(I)$ f is nowhere differentiable.

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} \text{ does not exist at any } x.$$
 What about

$$\overline{D}f(x) = \limsup_{y \to x} \frac{f(y) - f(x)}{y - x},$$

$$\underline{D}f(x) = \liminf_{y \to x} \frac{f(y) - f(x)}{y - x}?$$

\overline{D} and \underline{D} of typical continuous functions

Theorem (Jarník, 1933)

$$\forall^* f \in C(I) \ \forall x \in I \ \overline{D} f(x) = \infty, \ \underline{D} f(x) = -\infty.$$

\overline{D} and \underline{D} of typical continuous functions

Theorem (Jarník, 1933)

$$\forall^* f \in C(I) \ \forall x \in I \ \overline{D} f(x) = \infty, \ \underline{D} f(x) = -\infty.$$

What about Dini derivatives

$$D^+f(x) = \limsup_{y \downarrow x} \frac{f(y) - f(x)}{y - x},$$

$$D_+f(x) = \liminf_{y \downarrow x} \frac{f(y) - f(x)}{y - x},$$

$$D^-f(x) = \limsup_{y \uparrow x} \frac{f(y) - f(x)}{y - x},$$

$$D_-f(x) = \liminf_{y \uparrow x} \frac{f(y) - f(x)}{y - x}?$$

Dini derivatives of typical functions

Is it true that
$$\forall^* f \in C(I) \ \forall x \in I$$

$$D^+ f(x) = D^- f(x) = \infty,$$

$$D_+ f(x) = D_- f(x) = -\infty?$$

Dini derivatives of typical functions

Is it true that
$$\forall^* f \in C(I) \ \forall x \in I$$

$$D^+ f(x) = D^- f(x) = \infty,$$

$$D_+ f(x) = D_- f(x) = -\infty?$$

No!

There is no such f.

Dini derivatives of typical functions

Is it true that
$$\forall^* f \in C(I) \ \forall x \in I$$

$$D^+ f(x) = D^- f(x) = \infty,$$

$$D_+ f(x) = D_- f(x) = -\infty?$$

No!

There is no such f.

For, if f attains its maximum at $a \in I$, then $D^+f(a) < 0$ and $D_-f(a) \geq 0$.

Knot points

Definition

A point $x \in I$ is a knot point of $f \in C(I)$ if

$$D^+f(x) = D^-f(x) = \infty, D_+f(x) = D_-f(x) = -\infty.$$

Knot points

Definition

A point $x \in I$ is a knot point of $f \in C(I)$ if

$$D^+f(x) = D^-f(x) = \infty, D_+f(x) = D_-f(x) = -\infty.$$

 $\nexists f \in C(I) \ \forall x \in I \ x \text{ is a knot point of } f.$

Knot points

Definition

A point $x \in I$ is a knot point of $f \in C(I)$ if

$$D^+f(x) = D^-f(x) = \infty, D_+f(x) = D_-f(x) = -\infty.$$

$$\begin{split} & \ \, \nexists f \in C(I) \,\, \forall x \in I \quad x \text{ is a knot point of } f. \\ & \text{Nevertheless, it turns out that} \\ & \ \, \forall^* f \in C(I) \,\, \text{`most' points are knot points of } f. \end{split}$$

Jarník's theorem

Theorem (Jarník, 1933)

$$\forall^* f \in C(I)$$
 almost every $x \in I$ is a knot point of f .

Jarník's theorem

Theorem (Jarník, 1933)

$$\forall^* f \in C(I)$$
 almost every $x \in I$ is a knot point of f .

In other words, setting

$$N(f) = \{x \in I \mid x \text{ is NOT a knot point of } f\},$$
 we have

$$\forall^* f \in C(I) \ \ N(f)$$
 is Lebesgue null.

Jarník's theorem

Theorem (Jarník, 1933)

$$\forall^* f \in C(I)$$
 almost every $x \in I$ is a knot point of f .

In other words, setting

$$N(f) = \{x \in I \mid x \text{ is } {\sf NOT} \text{ a knot point of } f\},$$
 we have

$$\forall^* f \in C(I)$$
 $N(f)$ is Lebesgue null.

How small is N(f) for a typical $f \in C(I)$?

Theorem of Preiss and Zajíček

Theorem (Preiss and Zajíček, unpublished)

For a σ -ideal \mathcal{I} on I, T.F.A.E.:

- (1) $\forall f \in C(I) \ N(f) \in \mathcal{I};$
- (2) $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} (i.e. $\forall^* K \in \mathcal{K}$ $K \in \mathcal{I}$).

Here $K = \{K \subset I \mid K \text{ is closed } (= \text{compact})\}$ with the Hausdorff metric (Vietoris topology).

Theorem of Preiss and Zajíček

Theorem (Preiss and Zajíček, unpublished)

For a σ -ideal \mathcal{I} on I, T.F.A.E.:

- (1) $\forall f \in C(I) \ N(f) \in \mathcal{I};$
- (2) $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} (i.e. $\forall^* K \in \mathcal{K}$ $K \in \mathcal{I}$).

Here $K = \{K \subset I \mid K \text{ is closed } (= \text{compact})\}$ with the Hausdorff metric (Vietoris topology).

Example

 $\forall^* f \in C(I) \ N(f)$ is meagre, $\dim_H N(f) = 0$, etc.

Generalisation

Problem

Characterise $S \subset \mathcal{P}(I)$ s.t. $\forall^* f \in C(I)$ $N(f) \in S$.

Generalisation

Problem

Characterise $S \subset \mathcal{P}(I)$ s.t. $\forall^* f \in C(I)$ $N(f) \in S$.

Observe that N(f) is F_{σ} (= Σ_2^0) for every $f \in C(I)$.

Generalisation

Problem

Characterise $\mathcal{S} \subset \mathcal{P}(I)$ s.t. $\forall^* f \in C(I)$ $N(f) \in \mathcal{S}$.

Observe that N(f) is F_{σ} (= Σ_2^0) for every $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ s.t. $\forall^* f \in C(I)$ $N(f) \in \mathcal{F}$.

Main Theorem

Theorem (Preiss and S.)

For $\mathcal{F} \subset \mathcal{F}_{\sigma}$, T.F.A.E.:

- (1) $\forall^* f \in C(I) \ N(f) \in \mathcal{F};$
- (2) $\forall^*(K_n) \in \mathcal{K}^{\mathbb{N}} \quad \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}.$
- (2) means that the inverse image of ${\mathcal F}$ under the surjection

$$\mathcal{K}^{\mathbb{N}} \longrightarrow \mathcal{F}_{\sigma}; (K_n) \longmapsto \bigcup_{n=1}^{\infty} K_n$$

is residual.

(2)
$$\forall^*(K_n) \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^* f \ N(f) \in \mathcal{F}$

$$\frac{(2) \ \forall^*(K_n) \quad \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow (1) \ \forall^* f \quad N(f) \in \mathcal{F}}{\mathcal{A} := \{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}: \text{ residual in } \mathcal{K}^{\mathbb{N}}.}$$

(2)
$$\forall^*(K_n) \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^*f \ N(f) \in \mathcal{F}$

 $\mathcal{A}:=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid igcup_{n=1}^\infty K_n\in\mathcal{F}\}$: residual in $\mathcal{K}^\mathbb{N}$.

To show: $\{f \in C(I) \mid N(f) \in \mathcal{F}\}$ is residual.

(2)
$$\forall^*(K_n) \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^*f \ N(f) \in \mathcal{F}$

$$\mathcal{A}:=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid igcup_{n=1}^\infty K_n\in\mathcal{F}\}$$
: residual in $\mathcal{K}^\mathbb{N}$.

To show: $\{f \in C(I) \mid N(f) \in \mathcal{F}\}$ is residual.

Suffices to show:

$$\{f \in C(I) \mid \exists (K_n) \in \mathcal{A} \ N(f) = \bigcup_{n=1}^{\infty} K_n \}$$
 is residual.

$$(2) \ \forall^*(K_n) \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow (1) \ \forall^*f \ N(f) \in \mathcal{F}$$

 $\mathcal{A}:=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid \bigcup_{n=1}^\infty K_n\in\mathcal{F}\}: \text{ residual in } \mathcal{K}^\mathbb{N}.$

To show: $\{f \in C(I) \mid N(f) \in \mathcal{F}\}$ is residual.

Suffices to show:

$$\{f \in C(I) \mid \exists (K_n) \in \mathcal{A} \ N(f) = \bigcup_{n=1}^{\infty} K_n\}$$
 is residual.

This is possible by constructing a very complicated winning strategy in a Banach-Mazur game.

 $(\exists winning strategy in BM-game \iff residuality)$

(2)
$$\forall^*(K_n) \cup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^*f \ N(f) \in \mathcal{F}$

 $\mathcal{A}:=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid \bigcup_{n=1}^\infty K_n\in\mathcal{F}\}: \text{ residual in } \mathcal{K}^\mathbb{N}.$

To show: $\{f \in C(I) \mid N(f) \in \mathcal{F}\}$ is residual.

Suffices to show:

 $\{f \in C(I) \mid \exists (K_n) \in \mathcal{A} \ N(f) = \bigcup_{n=1}^{\infty} K_n\}$ is residual.

This is possible by constructing a very complicated winning strategy in a Banach-Mazur game.

 $(\exists$ winning strategy in BM-game \iff residuality) But the converse appears to be difficult to prove by the same method.

Sophistication of this method

Lemma

$$\exists \mathbb{X} \subset \mathcal{K}^{\mathbb{N}} \times C(I) \text{ s.t.}$$

- (A) $((K_n), f) \in \mathbb{X} \implies \bigcup_{n=1}^{\infty} K_n = N(f);$
- (B) $\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}$ is residual $\implies \forall^* f \in C(I) \ \exists (K_n) \in \mathcal{A} \ ((K_n), f) \in \mathbb{X};$
- (C) \mathbb{X} is analytic $(=\Sigma_1^1)$ in $\mathcal{K}^{\mathbb{N}} \times C(I)$;
- (D) one more condition (specified later).

Sophistication of this method

Lemma

$$\exists \mathbb{X} \subset \mathcal{K}^{\mathbb{N}} \times C(I) \text{ s.t.}$$

- (A) $((K_n), f) \in \mathbb{X} \implies \bigcup_{n=1}^{\infty} K_n = N(f);$
- (B) $\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}$ is residual $\implies \forall^* f \in C(I) \ \exists (K_n) \in \mathcal{A} \ ((K_n), f) \in \mathbb{X};$
- (C) \mathbb{X} is analytic $(=\Sigma_1^1)$ in $\mathcal{K}^{\mathbb{N}} \times C(I)$;
- (D) one more condition (specified later).

We define \mathbb{X} in a (complicated but) explicit way. Use the BM-game to show (B) (hardest part in the whole proof).

(2)
$$\forall^*(K_n) \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^*f \ N(f) \in \mathcal{F}$

$$\frac{(2) \ \forall^*(K_n) \quad \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow (1) \ \forall^* f \quad N(f) \in \mathcal{F}}{\mathcal{A} := \{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}: \text{ residual in } \mathcal{K}^{\mathbb{N}}.}$$

(2)
$$\forall^*(K_n) \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \Longrightarrow$$
 (1) $\forall^*f \ N(f) \in \mathcal{F}$

 $\mathcal{A}:=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid igcup_{n=1}^\infty K_n\in\mathcal{F}\}$: residual in $\mathcal{K}^\mathbb{N}$. By (B), $orall^*f\in C(I)$ $\exists (K_n)\in\mathcal{A}$ $\big((K_n),f\big)\in\mathbb{X}$.

(1)
$$\forall^* f \ N(f) \in \mathcal{F} \Longrightarrow$$
 (2) $\forall^* (K_n) \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}$

$$\frac{(1) \ \forall^* f \ N(f) \in \mathcal{F} \Longrightarrow (2) \ \forall^* (K_n) \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}}{\{f \in C(I) \mid N(f) \in \mathcal{F}\} \text{ is residual.}}$$

Take a dense G_{δ} set $G \subset \{f \in C(I) \mid N(f) \in \mathcal{F}\}.$

$$\frac{(1) \ \forall^* f \ \ N(f) \in \mathcal{F} \implies (2) \ \forall^* (K_n) \ \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}}{\{f \in C(I) \mid N(f) \in \mathcal{F}\} \text{ is residual.}}$$
 Take a dense G_{δ} set $G \subset \{f \in C(I) \mid N(f) \in \mathcal{F}\}.$ $\mathcal{A} := \{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \ ((K_n), f) \in \mathbb{X}\}.$

$$\frac{(1) \ \forall^* f \ \ N(f) \in \mathcal{F} \implies (2) \ \forall^* (K_n) \ \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}}{\{f \in C(I) \mid N(f) \in \mathcal{F}\} \text{ is residual.}}$$
Take a dense G_{δ} set $G \subset \{f \in C(I) \mid N(f) \in \mathcal{F}\}.$

$$\mathcal{A} := \{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \ ((K_n), f) \in \mathbb{X}\}.$$
Observe that $(K_n) \in \mathcal{A} \implies \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}.$
Suffices to show that \mathcal{A} is residual.

(1)
$$\forall^* f \ N(f) \in \mathcal{F} \Longrightarrow$$
 (2) $\forall^* (K_n) \ \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}$

 $\{f \in C(I) \mid N(f) \in \mathcal{F}\}$ is residual.

Take a dense G_{δ} set $G \subset \{f \in C(I) \mid N(f) \in \mathcal{F}\}.$

$$\mathcal{A} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ ((K_n), f) \in \mathbb{X} \}.$$

Observe that $(K_n) \in \mathcal{A} \implies \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}$.

Suffices to show that ${\cal A}$ is residual.

 ${\cal A}$ is nonmeagre.

For, if \mathcal{A} is meagre, then applying (B) to \mathcal{A}^c gives $\forall^* f \in C(I) \ \exists (K_n) \in \mathcal{A}^c \ ((K_n), f) \in \mathbb{X}$.

So $\exists f \in G \ \exists (K_n) \in \mathcal{A}^c \ ((K_n), f) \in \mathbb{X}$, contradicting the def of \mathcal{A} .

Apply a topological 0-1 law to $\mathcal{A} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \left((K_n), f \right) \in \mathbb{X} \right\}.$

Apply a topological 0-1 law to $\mathcal{A} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \left((K_n), f \right) \in \mathbb{X} \right\}.$

■ $\mathcal{A} = \operatorname{pr}_{\mathcal{K}^{\mathbb{N}}} (\mathbb{X} \cap (\mathcal{K}^{\mathbb{N}} \times G))$ is analytic, hence having the Baire property;

Apply a topological 0-1 law to $\mathcal{A} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \left((K_n), f \right) \in \mathbb{X} \right\}.$

- $\mathcal{A} = \operatorname{pr}_{\mathcal{K}^{\mathbb{N}}} (\mathbb{X} \cap (\mathcal{K}^{\mathbb{N}} \times G))$ is analytic, hence having the Baire property;
- $\mathcal{A} = \bigcup_{f \in G} \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations because (D) $\forall f \in C(I) \mid \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations.

Apply a topological 0-1 law to $\mathcal{A} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \left((K_n), f \right) \in \mathbb{X} \right\}.$

- $\mathcal{A} = \operatorname{pr}_{\mathcal{K}^{\mathbb{N}}} (\mathbb{X} \cap (\mathcal{K}^{\mathbb{N}} \times G))$ is analytic, hence having the Baire property;
- $\mathcal{A} = \bigcup_{f \in G} \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations because (D) $\forall f \in C(I) \mid \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations.

It follows that A is either meagre or residual.

Apply a topological 0-1 law to $\mathcal{A} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \ \left((K_n), f \right) \in \mathbb{X} \right\}.$

- $\mathcal{A} = \operatorname{pr}_{\mathcal{K}^{\mathbb{N}}} (\mathbb{X} \cap (\mathcal{K}^{\mathbb{N}} \times G))$ is analytic, hence having the Baire property;
- $\mathcal{A} = \bigcup_{f \in G} \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations because (D) $\forall f \in C(I) \mid \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathbb{X} \}$ is invariant under finite permutations.

It follows that A is either meagre or residual. Since A is nonmeagre, A must be residual. \square

