
RESTRICTED SUM FORMULA FOR FINITE AND SYMMETRIC1

MULTIPLE ZETA VALUES2
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Abstract. The sum formula for finite and symmetric multiple zeta values,
established by Wakabayashi and the authors, implies that if the weight and

depth are fixed and the specified component is required to be more than one,
then the values sum up to a rational multiple of the analogue of the Riemann
zeta value. We prove that the result remains true if we further demand that

the component should be more than two or that another component should
also be more than one.

1. Introduction4

The multiple zeta values and multiple zeta-star values are the real numbers de-
fined by

ζ(k1, . . . , kr) =
∑

m1>···>mr≥1

1

mk1
1 · · ·mkr

r

,

ζ⋆(k1, . . . , kr) =
∑

m1≥···≥mr≥1

1

mk1
1 · · ·mkr

r

for k1, . . . , kr ∈ Z≥1 with k1 ≥ 2. They are generalisations of the values of the5

Riemann zeta function at positive integers, and they are known to have interesting6

algebraic structures due to the many relations among them, the simplest being7

ζ(2, 1) = ζ(3). See, for example, the book [9] by Zhao for further details on multiple8

zeta(-star) values.9

The variants of multiple zeta values that we shall be looking at in this paper
are finite multiple zeta values ζA(k1, . . . , kr) and symmetric multiple zeta values
ζS(k1, . . . , kr) (the latter also known as symmetrised multiple zeta values and finite
real multiple zeta values), both introduced by Kaneko and Zagier [4] (see [9] for
details). SetA =

∏
p Fp/

⊕
p Fp, where p runs over all primes. For k1, . . . , kr ∈ Z≥1,

we define

ζA(k1, . . . , kr) =

( ∑
p>m1>···>mr≥1

1

mk1
1 · · ·mkr

r

mod p

)
p

∈ A,

ζ⋆A(k1, . . . , kr) =

( ∑
p>m1≥···≥mr≥1

1

mk1
1 · · ·mkr

r

mod p

)
p

∈ A.
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Let Z denote the Q-linear subspace of R spanned by the multiple zeta values. For
k1, . . . , kr ∈ Z≥1, we define

ζS(k1, . . . , kr) =

r∑
j=0

(−1)k1+···+kjζ(kj , . . . , k1)ζ(kj+1, . . . , kr) mod ζ(2) ∈ Z/ζ(2)Z,

ζ⋆S(k1, . . . , kr) =
r∑

j=0

(−1)k1+···+kjζ⋆(kj , . . . , k1)ζ
⋆(kj+1, . . . , kr) mod ζ(2) ∈ Z/ζ(2)Z,

where we set ζ(∅) = ζ⋆(∅) = 1. The multiple zeta(-star) values that appear in the1

definition of the symmetric multiple zeta(-star) values are the regularised values2

if the first component is 1; although there are two ways of regularisation, called3

the harmonic regularisation and the shuffle regularisation, it is known that the4

symmetric multiple zeta values remain unchanged as elements of Z/ζ(2)Z no matter5

which regularisation we use (see [4]).6

Kaneko and Zagier [4] made a striking conjecture that the finite multiple zeta7

values and the symmetric multiple zeta values are isomorphic; more precisely, if8

we let ZA denote the Q-linear subspace of A spanned by the finite multiple zeta9

values, then ZA and Z/ζ(2)Z are isomorphic as Q-algebras via the correspondence10

ζA(k1, . . . , kr) ↔ ζS(k1, . . . , kr). It means that ζA(k1, . . . , kr) and ζS(k1, . . . , kr)11

satisfy the same relations, and a notable example of such relations is the sum12

formula (Theorem 1.1). In what follows, we use the letter F when it can be replaced13

with either A or S; for example, by ζF (1) = 0 we mean that both ζA(1) = 0 and14

ζS(1) = 0 are true. We write15

ZF (k) =

{
(Bp−k/k mod p)p if F = A;

ζ(k) mod ζ(2) if F = S

for k ∈ Z≥2, where Bn denotes the n-th Bernoulli number. Note that it can be ver-16

ified rather easily that ζF (k − 1, 1) = ZF (k) for k ∈ Z≥2, so that (Bp−k/k mod17

p)p corresponds to ζ(k) mod ζ(2) via the above-mentioned isomorphism ZA ∼=18

Z/ζ(2)Z.19

Theorem 1.1 (Saito-Wakabayashi [8], Murahara [5]). For k, r, i ∈ Z with 1 ≤ i ≤
r ≤ k − 1, we have∑

k1+···+kr=k
ki≥2

ζF (k1, . . . , kr) = (−1)r
∑

k1+···+kr=k
ki≥2

ζ⋆F (k1, . . . , kr)

= (−1)i−1

((
k − 1

i− 1

)
+ (−1)r

(
k − 1

r − i

))
ZF (k).

The theorem implies that the sums belong to QZF (k). Our main theorem states20

that similar sums also belong to QZF (k) if k is odd:21

Theorem 1.2 (Main theorem). Let k be an odd integer with k ≥ 3, and let r be22

an integer with 1 ≤ r ≤ k − 2.23

(1) For i ∈ Z with 1 ≤ i ≤ r, we have24 ∑
k1+···+kr=k

ki≥3

ζF (k1, . . . , kr) = (−1)r
∑

k1+···+kr=k
ki≥3

ζ⋆F (k1, . . . , kr) ∈ QZF (k).
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(2) For distinct i, j ∈ Z with 1 ≤ i, j ≤ r, we have1 ∑
k1+···+kr=k

ki,kj≥2

ζF (k1, . . . , kr) = (−1)r
∑

k1+···+kr=k
ki,kj≥2

ζ⋆F (k1, . . . , kr) ∈ QZF (k).

The rational coefficients can be written explicitly, though in a rather compli-2

cated manner, in terms of binomial coefficients (see Theorem 3.1 for the preciese3

statement).4

Remark 1.3. If k is even, then ZF (k) = 0 and numerical experiments suggest that5

the sums are not always equal to 0.6

2. Preliminary lemmas7

This section will give a few preliminary lemmas that will be used to prove our8

main theorem in the next section.9

An index is a (possibly empty) sequence of positive integers. For an index10

k = (k1, . . . , kr), the number r is called its depth and k1 + · · ·+ kr its weight.11

Proposition 2.1. If (k1, . . . , kr) is a nonempty index, then12 ∑
σ∈Sr

ζF (kσ(1), . . . , kσ(r)) =
∑
σ∈Sr

ζ⋆F (kσ(1), . . . , kσ(r)) = 0,

where Sr denotes the symmetric group of order r.13

Proof. Roughly speaking, the sums are zero because they can be written as poly-14

nomials of the values ζF (k), which are all zero. For details, see [1, Theorem 2.3]15

and [7, Proposition 2.7], for example. □16

We write {k}r for the r times repetition of k.17

Corollary 2.2. For k, r ∈ Z≥1, we have18

ζF ({k}r) = ζ⋆F ({k}r) = 0.

Proof. Apply Proposition 2.1 to (k1, . . . , kr) = ({k}r). □19

Definition 2.3. For each index k, write its components as sums of ones, and define20

its Hoffman dual k∨ as the index obtained by swapping plus signs and commas.21

Example 2.4. If k = (2, 1, 3) = (1+1, 1, 1+1+1), then k∨ = (1, 1+1+1, 1, 1) =22

(1, 3, 1, 1).23

The following theorem, known as duality, was proved by Hoffman [1] for the24

F = A case and by Jarossay [2] for the F = S case:25

Theorem 2.5 (Hoffman [1], Jarossay [2]). If k is a nonempty index, then26

ζ⋆F (k
∨) = −ζ⋆F (k).

For indices k and l of the same weight, we write k ⪯ l to mean that, writing their27

components as sums of ones, we can obtain l from k by replacing some (possibly28

none) of the plus signs with commas. For example, (2, 1, 3) = (1+1, 1, 1+1+1) ⪯29

(1, 1, 1, 1 + 1, 1) = (1, 1, 1, 2, 1).30

Corollary 2.6. If k is a nonempty index of depth r, then31

(−1)rζF (k) =
∑
l⪰k

ζF (l).
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Proof. An easy combinatorial argument shows that this corollary is equivalent to1

Theorem 2.5; see [7, Corollary 2.15] for details. □2

We adopt the standard convention for binomial coefficients that
(
a
b

)
= 0 if a ∈3

Z≥0 and b ∈ Z \ {0, . . . , a}. For notational simplicity, we write4 [
a

b

]
= (−1)b

(
a

b

)
for a ∈ Z≥0 and b ∈ Z (not to be confused with the Stirling numbers of the first5

kind). Then Theorem 1.1 can be rewritten as follows:6

Theorem 2.7 (Another form of Theorem 1.1). For k, r, i ∈ Z with 1 ≤ i ≤ r ≤
k − 1, we have ∑

k1+···+kr=k
ki≥2

ζF (k1, . . . , kr) = (−1)r
∑

k1+···+kr=k
ki≥2

ζ⋆F (k1, . . . , kr)

=

([
k − 1

i− 1

]
−
[
k − 1

r − i

])
ZF (k).

Lemma 2.8. For a, b ∈ Z≥0 with a+ b odd, we have7

ζF ({1}a, 2, {1}b) = −
[
a+ b+ 2

a+ 1

]
ZF (a+ b+ 2) =

[
a+ b+ 2

b+ 1

]
ZF (a+ b+ 2).

Proof. Applying Theorem 2.7 to k = a+ b+ 2, r = a+ b+ 1, and i = a+ 1 gives8

ζF ({1}a, 2, {1}b) =
([

a+ b+ 1

a

]
−
[
a+ b+ 1

b

])
ZF (a+ b+ 2),

and we have[
a+ b+ 1

a

]
−
[
a+ b+ 1

b

]
= (−1)a

(
a+ b+ 1

a

)
− (−1)b

(
a+ b+ 1

b

)
= −(−1)a+1

((
a+ b+ 1

a

)
+

(
a+ b+ 1

a+ 1

))
= −(−1)a+1

(
a+ b+ 2

a+ 1

)
= −

[
a+ b+ 2

a+ 1

]
.

By a similar reasoning, we also have9 [
a+ b+ 1

a

]
−
[
a+ b+ 1

b

]
=

[
a+ b+ 2

b+ 1

]
. □

Lemma 2.9. For a, b ∈ Z≥0 and c ∈ Z≥−1 with a+ b+ c odd, we have10

ζF ({1}a, 2, {1}c, 2, {1}b) =
1

2

([
a+ b+ c+ 4

a+ 1

]
−
[
a+ b+ c+ 4

b+ 1

])
ZF (a+ b+ c+4),

where we understand that ζF ({1}a, 2, {1}−1, 2, {1}b) = ζF ({1}a, 3, {1}b).11
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Proof. Keeping Corollary 2.2 in mind, we apply Corollary 2.6 to k = ({1}a, 2, {1}c, 2, {1}b)
to get

− ζF ({1}a, 2, {1}c, 2, {1}b)

= ζF ({1}a, 2, {1}c, 2, {1}b) + ζF ({1}a, 2, {1}b+c+2) + ζF ({1}a+c+2, 2, {1}b),
no matter whether c = −1 or c ≥ 0. This, together with Lemma 2.8, gives

ζF ({1}a, 2, {1}c, 2, {1}b)

= −1

2
(ζF ({1}a, 2, {1}b+c+2) + ζF ({1}a+c+2, 2, {1}b))

=
1

2

([
a+ b+ c+ 4

a+ 1

]
−
[
a+ b+ c+ 4

b+ 1

])
ZF (a+ b+ c+ 4). □

3. Proof of the main theorem1

Throughout this section, let k be an odd integer with k ≥ 3, and let r, i, j be2

integers with 1 ≤ i ≤ j ≤ r ≤ k − 2. Set3

Ik,r,i,j =

{
{(k1, . . . , kr) ∈ Zr

≥1 | ki ≥ 3} if i = j;

{(k1, . . . , kr) ∈ Zr
≥1 | ki, kj ≥ 2} if i < j,

and write4

Sk,r,i,j =
∑

k∈Ik,r,i,j

ζF (k), S⋆
k,r,i,j =

∑
k∈Ik,r,i,j

ζ⋆F (k).

For notational simplicity, we put i′ = j − i+ 1, i′′ = r − j + 1, and k′ = k − r − 2,5

so that i+ i′ + i′′ + k′ = k.6

The aim of this section is to prove the following theorem, from which Theorem 1.27

easily follows:8

Theorem 3.1. We have9

Sk,r,i,j = (−1)rS⋆
k,r,i,j =

1

2
Nk,r,i,jZF (k),

where Nk,r,i,j is an integer given by

Nk,r,i,j = (k′ + i+ 1)

([
k − 1

k′ + i

]
−
[
k − 1

i− 1

])
− (k′ + i′′ + 1)

([
k − 1

k′ + i′′

]
−
[
k − 1

i′′ − 1

])
+ k

([
k − 2

k′ + i− 1

]
−
[
k − 2

i− 2

]
−
[

k − 2

k′ + i′′ − 1

]
+

[
k − 2

i′′ − 2

])
.

3.1. Proof that Sk,r,i,j = (−1)rS⋆
k,r,i,j. In this subsection, we shall prove that10

Sk,r,i,j = (−1)rS⋆
k,r,i,j (Lemma 3.4).11

Proposition 3.2. If (k1, . . . , kr) is an index, then

ζF (kr, . . . , k1) = (−1)k1+···+krζF (k1, . . . , kr),

ζ⋆F (kr, . . . , k1) = (−1)k1+···+krζ⋆F (k1, . . . , kr).

Proof. Easy from the definitions; see [7, Proposition 2.6] for details. □12

Proposition 3.3. If k = (k1, . . . , kr) is a nonempty index, then13

r∑
s=0

(−1)sζ⋆F (ks, . . . , k1)ζF (ks+1, . . . , kr) = 0,
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where we set ζF (∅) = ζ⋆F (∅) = 1.1

Proof. Well known; see [7, Proposition 2.9] for the detailed proof. □2

Lemma 3.4. We have3

Sk,r,i,j = (−1)rS⋆
k,r,i,j .

Proof. Adding the equation in Proposition 3.3 for all (k1, . . . , kr) ∈ Ik,r,i,j gives4

r∑
s=0

(−1)s
∑

(k1,...,kr)∈Ik,r,i,j

ζ⋆F (ks, . . . , k1)ζF (ks+1, . . . , kr) = 0,

whose left-hand side we shall write as
∑r

s=0(−1)sAs for simplicity. Observe that
A0 = Sk,r,i,j and that

Ar =
∑

(k1,...,kr)∈Ik,r,i,j

ζ⋆F (kr, . . . , k1)

=
∑

(k1,...,kr)∈Ik,r,i,j

(−1)k1+···+krζ⋆F (k1, . . . , kr)

= −S⋆
k,r,i,j

by Proposition 3.2 because k is odd. For s = j, . . . , r − 1, we have

As =
k∑

l=0

( ∑
(k1,...,ks)∈Il,s,i,j

ζ⋆F (ks, . . . , k1)

)( ∑
ks+1+···+kr=k−l

ζF (ks+1, . . . , kr)

)
= 0

because of Proposition 2.1; we similarly have As = 0 for s = 1, . . . , i − 1. If i < j
and i ≤ s ≤ j − 1, then we have

As =
k∑

l=0

( ∑
k1+···+ks=l

ki≥2

ζ⋆F (ks, . . . , k1)

)( ∑
ks+1+···+kr=k−l

kj≥2

ζF (ks+1, . . . , kr)

)

=
k∑

l=0

(
(−1)l

∑
k1+···+ks=l

ki≥2

ζ⋆F (k1, . . . , ks)

)( ∑
ks+1+···+kr=k−l

kj≥2

ζF (ks+1, . . . , kr)

)

=

k∑
l=0

(−1)l+s

([
l − 1

i− 1

]
−
[
l − 1

s− i

])
ZF (l)

([
k − l − 1

j − s− 1

]
−
[
k − l − 1

r − j

])
ZF (k − l)

by Proposition 3.2 and Theorem 2.7; since k is odd, either l or k − l must even5

and so ZF (l)ZF (k − l) = 0 for all l = 0, . . . , k, from which it follows that As = 0.6

Therefore we have Sk,r,i,j − (−1)rS⋆
k,r,i,j = 0, and the lemma follows. □7

3.2. Computation of Sk,r,i,j. In this subsection, we shall compute Sk,r,i,j (Lemma 3.9).8

The main ingredient of the computation is the following Ohno type relation, con-9

jectured by Kaneko [3] and established by Oyama [6]:10

Theorem 3.5 (Oyama [6, Theorem 1.4]). Let k = (k1, . . . , kr) be an index, and11

write its Hoffman dual as k∨ = (k′1, . . . , k
′
r′). Then for m ∈ Z≥0, we have12 ∑

e1+···+er=m
e1,...,er≥0

ζF (k1 + e1, . . . , kr + er) =
∑

e′1+···+e′
r′=m

e′1,...,e
′
r≥0

ζF ((k
′
1 + e′1, . . . , k

′
r′ + e′r′)

∨).
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Lemma 3.6. We have1

Sk,r,i,j =
∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

ζF ((i+ e′1, i
′ + e′2, i

′′ + e′3)
∨).

Proof. Theorem 3.5 shows that if i = j, then

Sk,r,i,j =
∑

e1+···+er=k′

e1,...,er≥0

ζF (1 + e1, . . . , 1 + ei−1, 3 + ei, 1 + ei+1, . . . , 1 + er)

=
∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

ζF ((i+ e′1, i
′ + e′2, i

′′ + e′3)
∨),

and that if i < j, then

Sk,r,i,j

=
∑

e1+···+er=k′

e1,...,er≥0

ζF (1 + e1, . . . , 1 + ei−1, 2 + ei, 1 + ei+1, . . . , 1 + ej−1, 2 + ej , 1 + ej+1, . . . , 1 + er)

=
∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

ζF ((i+ e′1, i
′ + e′2, i

′′ + e′3)
∨). □

Lemma 3.7. We have2

Sk,r,i,j =
1

2

∑
e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

([
k

i+ e′1

]
−
[

k

i′′ + e′3

])
ZF (k).

Proof. Using the same convention as in the statement of Lemma 2.9, we have3

(i+ e′1, i
′ + e′2, i

′′ + e′3)
∨ = ({1}i+e′1−1, 2, {1}i

′+e′2−2, 2, {1}i
′′+e′3−1),

and so by Lemmas 2.9 and 3.6, we have

Sk,r,i,j =
∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

ζF ((i+ e′1, i
′ + e′2, i

′′ + e′3)
∨)

=
∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

ζF ({1}i+e′1−1, 2, {1}i
′+e′2−2, 2, {1}i

′′+e′3−1)

=
1

2

∑
e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

([
k

i+ e′1

]
−
[

k

i′′ + e′3

])
ZF (k). □

Lemma 3.8. We have∑
e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

[
k

i+ e′1

]
= (k′ + i+ 1)

([
k − 1

k′ + i

]
−
[
k − 1

i− 1

])
+ k

([
k − 2

k′ + i− 1

]
−
[
k − 2

i− 2

])
,

∑
e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

[
k

i′′ + e′3

]
= (k′ + i′′ + 1)

([
k − 1

k′ + i′′

]
−
[
k − 1

i′′ − 1

])
+ k

([
k − 2

k′ + i′′ − 1

]
−
[
k − 2

i′′ − 2

])
.
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Proof. By symmetry, we only need to show the first equality, which can be seen as
follows: ∑

e′1+e′2+e′3=k′

e′1,e
′
2,e

′
3≥0

[
k

i+ e′1

]

=
k′∑

e′1=0

(−1)i+e′1(k′ − e′1 + 1)

(
k

i+ e′1

)

=
k′∑

e′1=0

(−1)i+e′1((k′ + i+ 1)− (i+ e′1))

(
k

i+ e′1

)

= (k′ + i+ 1)

k′∑
e′1=0

(−1)i+e′1

(
k

i+ e′1

)
− k

k′∑
e′1=0

(−1)i+e′1

(
k − 1

i+ e′1 − 1

)

= (k′ + i+ 1)
k′∑

e′1=0

(
(−1)i+e′1

(
k − 1

i+ e′1

)
− (−1)i+e′1−1

(
k − 1

i+ e′1 − 1

))

+ k
k′∑

e′1=0

(
(−1)i+e′1−1

(
k − 2

i+ e′1 − 1

)
− (−1)i+e′1−2

(
k − 2

i+ e′1 − 2

))

= (k′ + i+ 1)

(
(−1)k

′+i

(
k − 1

k′ + i

)
− (−1)i−1

(
k − 1

i− 1

))
+ k

(
(−1)k

′+i−1

(
k − 2

k′ + i− 1

)
− (−1)i−2

(
k − 2

i− 2

))
= (k′ + i+ 1)

([
k − 1

k′ + i

]
−
[
k − 1

i− 1

])
+ k

([
k − 2

k′ + i− 1

]
−
[
k − 2

i− 2

])
. □

Lemma 3.9. We have1

Sk,r,i,j =
1

2
Nk,r,i,jZF (k),

where Nk,r,i,j is an integer given by

Nk,r,i,j = (k′ + i+ 1)

([
k − 1

k′ + i

]
−
[
k − 1

i− 1

])
− (k′ + i′′ + 1)

([
k − 1

k′ + i′′

]
−
[
k − 1

i′′ − 1

])
+ k

([
k − 2

k′ + i− 1

]
−
[
k − 2

i− 2

]
−
[

k − 2

k′ + i′′ − 1

]
+

[
k − 2

i′′ − 2

])
.

Proof. Immediate from Lemmas 3.7 and 3.8. □2

Lemmas 3.4 and 3.9 complete the proof of our main theorem (Theorem 3.1).3
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