正規コピュラの漸近的裾依存性

斎藤新悟

九州大学大学院数理学研究院

2011/01/29

近藤宏樹氏(日新火災海上保険株式会社) 谷口説男氏(九州大学大学院数理学研究院) との共同研究

コピュラとは

コピュラは確率変数間の依存関係を記述する.

定義

コピュラとは、
$$C\colon [0,1]^2 \longrightarrow [0,1]$$
 であって、
$$\exists U,V \sim \mathrm{Uniform}(0,1) \ (独立とは限らない)$$

$$C(u,v) = P(U \le u,\ V \le v) \quad \forall u,v \in [0,1].$$

同値な定義

- コピュラとは, $C: [0,1]^2 \longrightarrow [0,1]$ であって,
 - $\forall u, v \in [0, 1]$ C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v.
 - $0 \le u_1 \le u_2 \le 1$, $0 \le v_1 \le v_2 \le 1$ $\implies C(u_2, v_2) - C(u_1, v_2) - C(u_2, v_1) + C(u_1, v_1) \ge 0$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣९○

Sklar の定理

Sklar の定理 $(1) \leftarrow$ 同時分布は周辺分布とコピュラで書ける

(X,Y):連続型(周辺分布関数 F_X , F_Y が連続)2 次元確率変数. $F_{X,Y}(x,y):=P(X \le x,\ Y \le y)$:同時分布関数. このとき, $\exists ! C_{X,Y}$: コピュラ

$$F_{X,Y}(x,y) = C_{X,Y}(F_X(x), F_Y(y)) \quad \forall x, y \in \mathbb{R}.$$

Sklar の定理 $(2) \leftarrow$ 周辺分布とコピュラは「独立に」選べる

 F_1, F_2 : 連続な 1 次元分布関数,C: コピュラ. このとき, $\exists (X,Y): 2$ 次元確率変数

- 周辺分布関数は F_1, F_2 .
- $C_{X,Y} = C$.

コピュラの例

$$F_{X,Y}(x,y) = C_{X,Y}(F_X(x), F_Y(y)).$$

- 積コピュラ C(u,v) = uv. ← 独立な X, Y に対応.
- Fréchet-Hoeffding 上界 $C(u,v) = \min\{u,v\}$. $\longleftarrow Y = \varphi(X)$ (φ は単調増加) に対応.
- Fréchet-Hoeffding 下界 $C(u,v) = \max\{u+v-1,0\}$. $\longleftarrow Y = \varphi(X)$ (φ は単調減少) に対応.
- 正規コピュラ $C_{\rho} = C_{X,Y} \ (-1 < \rho < 1).$ ただし $(X,Y) \sim N \left((0,0), \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right).$

裾依存性とコピュラ

(X,Y):連続型2次元確率変数.

このとき, $F_X(X), F_Y(Y) \sim \text{Uniform}(0,1)$.

定義

(X,Y)の裾依存度:

$$\lambda_{X,Y}(t) := P(F_Y(Y) > t \mid F_X(X) > t) \quad (0 < t < 1).$$

(X,Y)の裾依存係数:

$$\lambda_{X,Y} := \lim_{t \nearrow 1} \lambda_{X,Y}(t).$$

命題

$$\lambda_{X,Y}(t) = \frac{1 - 2t + C_{X,Y}(t,t)}{1 - t}.$$

特に、 $\lambda_{X,Y}(t)$ 、 $\lambda_{X,Y}$ は $C_{X,Y}$ のみによって決まる.

裾依存度の例

$$\lambda_{X,Y}(t) = P(F_Y(Y) > t \mid F_X(X) > t) \to \lambda_{X,Y} \ (t \nearrow 1).$$

- 積コピュラ C(u, v) = uv $\Rightarrow \lambda(t) = 1 - t, \lambda = 0.$
- Fréchet-Hoeffding 上界 $C(u, v) = \min\{u, v\}$ $\implies \lambda(t) = 1, \lambda = 1.$
- Fréchet-Hoeffding 下界 $C(u,v) = \max\{u+v-1,0\}$ $\implies \lambda(t) = 0 \ \left(t \ge \frac{1}{2}\right), \ \lambda = 0.$
- 正規コピュラ C_{ρ} $(-1 < \rho < 1)$ $\Longrightarrow \lambda = 0$.

Fréchet-Hoeffding 下界,正規コピュラの裾依存性は積コピュラ(独立性)と同じ?

裾依存度の比較

	積コピュラ	FH下界	正規コピュラ $(ho=0.5)$
t = 0.8	0.2000	0.0000	0.4358
t = 0.9	0.1000	0.0000	0.3240
t = 0.95	0.0500	0.0000	0.2438
t = 0.99	0.0100	0.0000	0.1294
t = 0.995	0.0050	0.0000	0.0993
t = 0.999	0.0010	0.0000	0.0543

 $[\]longrightarrow$ 極限値はすべて0でも漸近挙動は異なる.

漸近挙動

- 積コピュラ: $\lambda(t) = 1 t$.
- FH 下界: $\lambda(t) = 0$.
- 正規コピュラ:

主定理

正規コピュラ C_{ρ} について

$$\lambda(t) = \sqrt{\frac{(1+\rho)^3}{2\pi(1-\rho)}} e^{-\frac{1-\rho}{2(1+\rho)}s^2} \left(s^{-1} - \frac{1+2\rho-\rho^2}{1-\rho}s^{-3} + O(s^{-5})\right)$$
$$\sim (4\pi)^{-\frac{\rho}{1+\rho}} \sqrt{\frac{(1+\rho)^3}{1-\rho}} (1-t)^{\frac{1-\rho}{1+\rho}} \left(-\log(1-t)\right)^{-\frac{\rho}{1+\rho}}.$$

ただし
$$t=\Phi(s)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^s e^{-x^2/2}\,dx$$
(標準正規分布の分布関数).