典型的連続関数の結び目点

斎藤新悟(九大数理)

本講演で述べる結果は,David Preiss (University of Warwick) との共同研究である. I=[0,1] とし,Banach 空間 $C(I)=\{f\colon I\longrightarrow \mathbb{R}\mid f$ は連続 $\}$ を考える.

定義1

典型的 (typical, generic) な $f \in C(I)$ が性質 P を持つ ($\forall^* f \in C(I)$ P と書く) とは , 集合 $\{f \in C(I) \mid f$ は性質 P を持つ $\}$ が残留的であることをいう .

ここで , 一般に位相空間の部分集合 A が残留的 (residual, comeagre) であるとは , 補集合 A^c がやせている (meagre, first category) , すなわち $A^c = \bigcup_{n=1}^{\infty} A_n$ を満たす疎 (nowhere dense) な A_n が存在することをいう .

本講演では,典型的な $f\in C(I)$ の性質について考察する.典型的な $f\in C(I)$ の性質としては,Banach,Mazurkiewicz によって 1931 年に独立に証明された定理「典型的な $f\in C(I)$ はいたるところ微分不可能である」がよく知られている.したがって,典型的な $f\in C(I)$ に対してその導関数を考えることはできないが,代わりに Dini 微分を考えることができる:

定義 2

 $f \in C(I)$ の $x \in I$ における Dini 微分 (Dini derivative) とは ,

$$D^{+}f(x) = \limsup_{h \downarrow 0} \frac{f(x+h) - f(x)}{h}, \qquad D^{-}f(x) = \limsup_{h \uparrow 0} \frac{f(x+h) - f(x)}{h},$$
$$D_{+}f(x) = \liminf_{h \downarrow 0} \frac{f(x+h) - f(x)}{h}, \qquad D_{-}f(x) = \liminf_{h \uparrow 0} \frac{f(x+h) - f(x)}{h}$$

で定義される $\mathbb{R}\cup\{\pm\infty\}$ の元をいう.ただし, $0\in I$ では $D^+f(0),\,D_+f(0)$ のみ, $1\in I$ では $D^-f(1),\,D_-f(1)$ のみ定義する.

典型的な $f \in C(I)$ の Dini 微分については次の定理が知られている:

定理 3 (Jarník, 1933)

典型的な $f \in C(I)$ に対して,ほとんどすべての $x \in I$ において次が成立する:

$$D^+f(x) = D^-f(x) = \infty, \qquad D_+f(x) = D_-f(x) = -\infty.$$

このような点は、fが「最も微分不可能」な点と考えられ、結び目点と呼ばれる:

定義4

 $f \in C(I)$ とする . $x \in I$ が f の結び目点 (knot point) であるとは ,

$$D^{+}f(x) = D^{-}f(x) = \infty, \qquad D_{+}f(x) = D_{-}f(x) = -\infty$$

が成立することをいう $f \in C(I)$ の結び目点でない I の点全体の集合を N(f) と書く f

なお ,I の端点においては定義できる 2 つの Dini 微分がそれぞれ ∞ , $-\infty$ となるときに結び目点であるという.例えば , $0\in I$ が $f\in C(I)$ の結び目点であるとは $D^+f(0)=\infty$, $D_+f(0)=-\infty$ が成立するということである.

記号 N(f) を用いると,Jarník の定理は「典型的な $f \in C(I)$ に対して N(f) は零集合である」と言い換えられる.Jarník の定理の自然な拡張として,どのような意味において「典型的な $f \in C(I)$ に対して N(f) は小さい」といえるかという問題が考えられる.この問題は Preiss,Zajíček によって完全な特徴づけが得られた.この定理を述べるために,I の閉部分集合全体(すなわちコンパクト部分集合全体)の集合を K と書き,K に Hausdorff 距離を導入する.Hausdorff 距離によって,K はコンパクト距離空間になることが知られている.

定理 5 (Preiss & Zajíček, unpublished)

I上の σ イデアル \mathcal{I} に対して次は同値である:

- (1) 典型的な $f \in C(I)$ に対して $N(f) \in \mathcal{I}$ が成立する .
- (2) 典型的な $K \in \mathcal{K}$ が \mathcal{I} に属する(すなわち $\mathcal{I} \cap \mathcal{K} \subset \mathcal{K}$ が残留的).

ここで , \mathcal{I} が I 上の σ イデアルであるとは , \mathcal{I} が I の空でない部分集合族で次が成立することをいう :

- $A \in \mathcal{I}$, $B \subset A$ $\Leftrightarrow \mathcal{I}$ $B \in \mathcal{I}$.
- $A_n \in \mathcal{I} \ (n \in \mathbb{N}) \$ \$\text{\$\text{\$a\$} is \$\int_{n=1}^{\infty} A_n \in \mathcal{I}\$.

I上の σ イデアルは「小さい」集合全体の族と考えられる.

この定理を, σ イデアルとは限らない一般のIの部分集合族に拡張することを考える.すなわち,I の部分集合族S に対して,「典型的な $f\in C(I)$ に対して $N(f)\in S$ 」となるための必要十分条件を求める.任意の $f\in C(I)$ に対してN(f) は F_σ 集合(可算個の閉集合の和集合)であることに注意すると,I の部分集合族としては F_σ 集合の族のみを考えればよいことが分かる.次がこの講演の主定理である:

定理 6 (Preiss & S.)

Iの F_{σ} 部分集合の族 \mathcal{F} に対して,以下は同値である:

- (1) 典型的な $f\in C(I)$ に対して $N(f)\in\mathcal{F}$.
- (2) 典型的な $(K_n) \in \mathcal{K}^{\mathbb{N}}$ に対して $\bigcup_{n=1}^{\infty} K_n \in \mathcal{F}$.

ここで, $\mathcal{K}^{\mathbb{N}}$ は \mathcal{K} の可算無限個の直積であり,直積位相を導入している.この定理の証明は,次の補題のような \mathscr{X} を構成することに帰着される:

補題7

次の性質を持つ $\mathscr{X} \subset \mathcal{K}^{\mathbb{N}} \times C(I)$ が存在する:

- (A) $((K_n), f) \in \mathcal{X}$ ならば $\bigcup_{n=1}^{\infty} K_n = N(f)$.
- (B) $\mathcal{A}\subset\mathcal{K}^{\mathbb{N}}$ が残留的ならば,典型的な $f\in C(I)$ に対して,ある $(K_n)\in\mathcal{A}$ が存在して $((K_n),f)\in\mathscr{X}$ が成立する.
- (C) *X* は解析的である.
- (D) 任意の $f\in C(I)$ に対して, $\left\{(K_n)\in\mathcal{K}^\mathbb{N}\;\middle|\;\left((K_n),f\right)\in\mathscr{X}\right\}$ は有限置換について閉じている.

ここで,一般にポーランド空間 X の部分集合 A が解析的 (analytic) であるとは,ポーランド空間 Y と $X \times Y$ の Borel 部分集合 B が存在して,A が B の第 1 成分への射影に一致していることである.また, $\mathcal{K}^{\mathbb{N}}$ の部分集合 A が有限置換について閉じている (closed under finite permutations) とは, $\{n \in \mathbb{N} \mid \sigma(n) \neq n\}$ が有限集合であるような \mathbb{N} 上の任意の置換 σ と任意の $(K_n) \in \mathcal{A}$ に対して $(K_{\sigma(n)}) \in \mathcal{A}$ が成立することである.

補題 7 の証明では, $\mathscr X$ を具体的に構成し,それらが性質 (A)–(D) を持つことを証明する.性質 (B) を示す際には,C(I) 上で Banach-Mazur ゲームと呼ばれるゲームの必勝法を構成することで,典型的な $f\in C(I)$ についての性質を証明する.

以下では、補題 7 を仮定して定理 6 を証明する。まず、 $(2) \Longrightarrow (1)$ は容易である:

定理6(2) ⇒ (1)の証明

 $\mathcal{A}=\{(K_n)\in\mathcal{K}^\mathbb{N}\mid \bigcup_{n=1}^\infty K_n\in\mathcal{F}\}$ とおくと,仮定よりこれは残留的なので,補題 7 (B) より典型的な $f\in C(I)$ に対して,ある $(K_n)\in\mathcal{A}$ が存在して $\big((K_n),f\big)\in\mathscr{X}$ が成立する.このような f に対して, \mathcal{A} の定義と補題 f f0 より f1 f2 となるので,f3 f3 f4 に対して,f5 となるので,f6 f6 に対して,f7 となるので,f8 f7 f8 と称

逆を示すには次の2つの記述集合論における結果を用いる:

|補題 8

ポーランド空間の解析的な部分集合は Baire の性質を持つ, すなわち開集合とやせた集合の対称差で書ける.

次の補題は位相的 0-1 法則と呼ばれている:

▮補題9

 $\mathcal{A}\subset\mathcal{K}^\mathbb{N}$ が有限置換について閉じており , Baire の性質を持つならば , \mathcal{A} はやせているか残留的である .

定理6(1) ⇒ (2)の証明

仮定より $\{f\in C(I)\mid N(f)\in\mathcal{F}\}$ は残留的なので,これに含まれる稠密な G_δ 集合(可算個の開集合の共通部分)G が取れる.ここで

$$\mathcal{A} = ig\{ (K_n) \in \mathcal{K}^\mathbb{N} \; ig| \; ig((K_n), f ig) \in \mathscr{X} \;$$
なる $f \in G \;$ が存在する $ig\}$

とおくと,G の定義と補題 7 (A) より $(K_n) \in \mathcal{A}$ ならば $\bigcup_{n=1}^{\infty} K_n \in \mathcal{F}$ なので,(2) を示すには \mathcal{A} が残留的であることを示せば十分である.

 $\mathcal{A} = \bigcup_{f \in G} \{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid ((K_n), f) \in \mathcal{X}\}$ なので,補題 7 (D) より \mathcal{A} は有限置換について閉じている.また, \mathcal{A} は $\mathcal{X} \cap (\mathcal{K}^{\mathbb{N}} \times G)$ の第 1 成分への射影なので補題 7 (C) よりこれは解析的であり,したがって補題 8 より Baire の性質を持つ.よって補題 9 より \mathcal{A} はやせているか残留的である.

A がやせていると仮定して矛盾を導く.このとき A^c は残留的なので,補題 7 (B) より 典型的な $f\in C(I)$ に対して,ある $(K_n)\in \mathcal{A}^c$ が存在して $\big((K_n),f\big)\in \mathcal{X}$ が成立する.これと,G が残留的であることより,ある $f\in G,\,(K_n)\in \mathcal{A}^c$ が存在して $\big((K_n),f\big)\in \mathcal{X}$ が成立するが,これは A の定義に反する.