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1. Introduction

This talk is based on the joint work [3] with Hiroki Kondo of Nisshin Fire & Marine
Insurance Company, Limited and of the Graduate School of Mathematics, Kyushu
University.

It is a significant component of risk management for an insurance company to
estimate the future loss ratio (the total losses divided by the total premiums) of a
line of business, given the data for previous years. We shall focus on the problem of
finding an estimator of the Value-at-Risk (VaR, quantile) of the future annual loss
ratio, assuming that the annual loss ratios are independent and identically distributed.
Here, for a positive number α slightly smaller than 1, the 100α% VaR of a random
variable y is the value y0 for which the probability that y is at most y0 is α.

2. Conventional method

Let x = (x1, . . . , xn) be the given data of the annual loss ratios in the past n years.
Write mx and s2x for its sample mean and (biased) sample variance respectively. The
most conventional method assumes that the loss ratios have the normal distribution
N(µ, σ2), with its parameters estimated by the maximum likelihood estimators µ̂ = mx

and σ̂ = sx. We then estimate the 100α% VaR of the future loss ratio by

(1) mx + zαsx,

where zα is the α-quantile of the standard normal distribution.
The method, however, has the major drawback that it takes into account only the

process risk (caused by the stochastic nature of the model) and not the parameter risk
(caused by the parameter estimation error) or the model risk (caused by using a wrong
model). The next two sections present a Bayesian approach that gives an estimator of
the VaR that takes all three types of risk into consideration.

3. Incorporating parameter risk

In what follows, with a slight abuse of notation, we shall not explicitly distinguish
between random variables and their realizations; also, we shall always use the same let-
ter f to denote probability density functions and probability mass functions of different
random variables.

We assume that the annual loss ratios have the normal distribution N(µ, τ−1) whose
parameters (µ, τ) are again random variables on the parameter space R×R>0. Bayes’



theorem tells us that the posterior distribution f(µ, τ |x) is proportional to the product
of the prior distribution f(µ, τ) and the likelihood
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If we use, as the prior distribution on the parameter space R×R>0, the normal-gamma
distribution NG(α, β, γ, δ) given by
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where α, β, δ > 0 and γ ∈ R are parameters, then it turns out that the posterior
distribution is also the normal-gamma distribution NG(α′, β′, γ′, δ′) with different pa-
rameters.

Following [2, Section 3.2], we shall use the improper prior distribution f(µ, τ) ∝ τ−1

as the non-informative prior on the parameter space R × R>0. This improper prior
can be thought of as NG(−1/2, 0, 0, 0) and the posterior distribution turns out to be
NG
(
(n − 1)/2, ns2x/2,mx, n

)
. Then the posterior predictive distribution of the future

loss ratio y is given by

f(y|x) =
∫ ∞

0

∫ ∞

−∞
f(y|µ, τ)f(µ, τ |x) dµ dτ

and its 100α% VaR turns out to be

(2) mx +

√
n+ 1

n− 1
tα(n− 1)sx,

where tα(n − 1) is the α-quantile of Student’s t-distribution with n − 1 degrees of
freedom.

4. Incorporating model risk

In order to find an estimator of the VaR with the model risk incorporated, we
need to look at at least one model in which the loss ratio distribution is not normal.
However, having used an improper prior f(µ, τ) ∝ τ−1 in the normal model, we cannot
compute the posterior distribution on the model space by the usual use of Bayes’
theorem. The key observation to overcome this problem is that in the model where
the loss ratios have the log-normal distribution, we can use exactly the same improper
prior f(µ, τ) ∝ τ−1 on the same parameter space R × R>0 as in the normal model.
Write N and LN respectively for the normal and log-normal models.

Under the model LN, the estimators of the VaR corresponding to (1) and (2) are

exp(mlog x + zαslog x),(3)

exp
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)
,(4)

where mlog x and s2log x respectively denote the sample mean and the (biased) sample
variance of (log x1, . . . , log xn).

Partly inspired by [1], we now employ Bayesian inference for the expanded parame-
ter space {N,LN}×R×R>0 equipped with the improper prior f(M,µ, τ) ∝ τ−1. Then
the posterior distribution turns out to be given by

• f(N |x) = p and (µ, τ)|(x,N) ∼ NG
(
(n− 1)/2, ns2x/2,mx, n

)
;



• f(LN |x) = 1− p and (µ, τ)|(x,LN) ∼ NG
(
(n− 1)/2, ns2log x/2,mlog x, n

)
,

where
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log x
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It follows that the 100α% VaR of the posterior predictive distribution is given by the
solution q > 0 to the equation

(5) pFt(n−1)

(
q −mx√

(n+ 1)/(n− 1) sx

)
+ (1− p)Ft(n−1)

(
log q −mlog x√

(n+ 1)/(n− 1) slog x

)
= α,

where Ft(n−1) is the cumulative distribution function of Student’s t-distribution with
n− 1 degrees of freedom.

5. Numerical example

If x = (0.33, 0.42, 0.37, 0.29, 0.31, 0.35, 0.42, 0.29, 0.23, 0.27) with n = 10, then the
formulae (1)–(5) give the following estimators of the 99% VaR of the future loss ratio:

(1) (2) (3) (4) (5)
distribution N N LN LN N/LN
process risk ✓ ✓ ✓ ✓ ✓

parameter risk ✗ ✓ ✗ ✓ ✓
model risk ✗ ✗ ✗ ✗ ✓

estimated 99% VaR 0.466 0.513 0.494 0.571 0.558

Comparison among the estimators given by (1), (2), and (5) indicates how the estimated
VaR increases as we incorporate the parameter and model risk one by one.

6. Concluding remarks

The Bayesian approach presented in this talk allows the VaR to be estimated com-
putationally easily with both the parameter and model risk incorporated.

If we would like to use a different distribution as the loss ratio distribution, the
parameter risk is often easy to incorporate into the estimated VaR but the model risk
seems to be very difficult to incorporate because our method relies essentially on the
fact that the same improper prior distribution can be used for both the normal and
log-normal models. We probably need to find appropriate proper priors to handle other
distributions.
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