Bayesian Approach to Measuring Parameter and Model Risk in Loss Ratio Estimation

Shingo SAITO

Faculty of Arts and Science, Kyushu University

7 November 2013

Joint work with Hiroki KONDO

(Nisshin Fire & Marine Insurance Company, Limited (till 31 Oct.) American Home Assurance Company (since 1 Nov.) Graduate School of Mathematics, Kyushu University

The problem considered in this presentation

Given data

 $\boldsymbol{x} = (x_1, \dots, x_n)$: annual loss ratios $\left(:= \frac{\text{total losses}}{\text{total premiums}} \right)$ in the past *n* years.

Example: $x_1 = 0.33, x_2 = 0.42, \ldots$

Aim

Estimate the Value at Risk (VaR) of the future annual loss ratio y.

For $0 < \alpha < 1$ (e.g. $\alpha = 0.99$), the $100\alpha\%$ **VaR** is the α -quantile of y, i.e. the value y_0 for which

$$\operatorname{Prob}(y \le y_0) = \alpha.$$

[Assumption] x_1, \ldots, x_n, y are i.i.d.

x: any one of x_1, \ldots, x_n . f(z): the probability density function of a random variable z.

Shingo SAITO (Kyushu Univ.)

Conventional method

Typical conventional method

- Assume that x is normally distributed: $x \sim N(\mu, \sigma^2)$.
- Find the maximum likelihood estimators of μ , σ^2 :

$$\widehat{\mu} = m_x = \frac{x_1 + \dots + x_n}{n} \qquad \text{(sample mean)},$$
$$\widehat{\sigma}^2 = s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - m_x)^2 \qquad \text{([biased] sample variance)}.$$

• Estimate the 100α %VaR of the future annual loss ratio y by

$$\widehat{\mu} + z_{\alpha}\widehat{\sigma} = \boldsymbol{m}_{\boldsymbol{x}} + \boldsymbol{z}_{\alpha}\boldsymbol{s}_{\boldsymbol{x}}$$
 (Equation (1)).

Here z_{α} is the α -quantile of the standard normal distribution:

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{z_{\alpha}}\exp\left(-\frac{z^{2}}{2}\right)dz = \alpha.$$

Drawback of the conventional method: three types of risk

Risk being taken into account

(A) **Process risk**: caused by the stochastic nature of the model.

Risk NOT being taken into account

- (B) Parameter risk: caused by the parameter estimation error.
- (C) Model risk: caused by using a wrong model (distribution).
- \longrightarrow We employ **Bayesian inference** to take (B) and (C) into account.

Likelihood:
$$x|\mu, \tau \sim N(\mu, \tau^{-1}) \ ((\mu, \tau) \in \mathbb{R} \times \mathbb{R}_{>0}).$$

Prior distribution: $(\mu, \tau) \sim NG(\alpha, \beta, \gamma, \delta) \ (\alpha, \beta, \delta > 0, \gamma \in \mathbb{R})$. The **normal-gamma distribution** $NG(\alpha, \beta, \gamma, \delta)$ is characterised by

•
$$\tau \sim \Gamma(\alpha, \beta)$$
, i.e. $f(\tau) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} \exp(-\beta\tau)$, and
• $\mu | \tau \sim N\left(\gamma, \frac{1}{\delta\tau}\right)$, i.e. $f(\mu|\tau) = \sqrt{\frac{\delta\tau}{2\pi}} \exp\left(-\frac{\delta\tau(\mu-\gamma)^2}{2}\right)$.

 \longrightarrow **Posterior distribution**: $(\mu, \tau) | \boldsymbol{x} \sim \text{NG}(\alpha', \beta', \gamma', \delta')$. Here $\alpha', \beta', \gamma', \delta'$ are functions of $\alpha, \beta, \gamma, \delta$ and the data \boldsymbol{x} . (The normal-gamma distribution is the **conjugate prior**.)

Shingo SAITO (Kyushu Univ.)

Likelihood: $x|\mu, \tau \sim N(\mu, \tau^{-1})$. Prior: $(\mu, \tau) \sim \operatorname{NG}(\alpha, \beta, \gamma, \delta) \ (\alpha, \beta, \delta > 0, \gamma \in \mathbb{R})$. \longrightarrow Posterior: $(\mu, \tau)|\mathbf{x} \sim \operatorname{NG}(\alpha', \beta', \gamma', \delta')$.

Use the **improper prior** $f(\mu, \tau) \propto \tau^{-1}$, i.e. $(\alpha, \beta, \gamma, \delta) = \left(-\frac{1}{2}, 0, 0, 0\right)$. The posterior distribution is proper: $(\mu, \tau) \sim \mathrm{NG}\left(\frac{n-1}{2}, \frac{ns_x^2}{2}, m_x, n\right)$.

Estimator of VaR of y: VaR of y|x (Equation (2)). The distribution of y|x (**posterior predictive distribution**) turns out to be (a linear transformation of) Student's *t*-distribution.

Shingo SAITO (Kyushu Univ.)

Towards incorporating model risk

Want to incorporate model risk. \longrightarrow Need another distribution. \longrightarrow The **log-normal distribution** turns out to be convenient.

Conventional method (corresponding to Equation (1))

- **Distribution**: Assume $x \sim LN(\mu, \sigma^2)$, i.e. $\log x | \mu, \tau \sim N(\mu, \sigma^2)$.
- Parameter estimation: Use MLE to get $\hat{\mu} = m_{\log x}$ and $\hat{\sigma}^2 = s_{\log x}^2$.
- Estimator of VaR of y: VaR of $LN(\hat{\mu}, \hat{\sigma}^2)$ (Equation (3)).

Incorporating parameter risk (corresponding to Equation (2))

- Likelihood: $x|\mu, \tau \sim LN(\mu, \tau^{-1})$.
- Prior: $f(\mu, \tau) \propto \tau^{-1}$ (same as before).

• Posterior:
$$(\mu, \tau) | \boldsymbol{x} \sim \mathrm{NG}\left(\frac{n-1}{2}, \frac{n s_{\log x}^2}{2}, m_{\log x}, n\right).$$

• Estimator of VaR of y: VaR of y|x (Equation (4)).

• Parameter space: $\{N, LN\} \times \mathbb{R} \times \mathbb{R}_{>0} (\ni (M, \mu, \tau))$ (N: normal, LN: log-normal).

• Likelihood:
$$x|M, \mu, \tau \sim \begin{cases} N(\mu, \tau^{-1}) & \text{if } M = N; \\ LN(\mu, \tau^{-1}) & \text{if } M = LN. \end{cases}$$

- Prior: $f(M, \mu, \tau) \propto \tau^{-1}$ (possible because we use N and LN).
- Posterior:

•
$$f(\mathbf{N}|\boldsymbol{x}) = p$$
 and $(\mu, \tau)|(\boldsymbol{x}, \mathbf{N}) \sim \mathrm{NG}(*, *, *, *);$
• $f(\mathbf{I}|\boldsymbol{x}) = 1$ and $(\mu, \tau)|(\boldsymbol{x}, \mathbf{N}) \sim \mathrm{NG}(*, *, *, *);$

• $f(LN | \mathbf{x}) = 1 - p$ and $(\mu, \tau) | (\mathbf{x}, LN) \sim NG(*, *, *, *),$

where p and the parameters * are (unspecified) functions of x.

• Estimator of VaR of y: VaR of y|x (Equation (5)).

Numerical example

 $n=10,\, \pmb{x}=(0.33, 0.42, 0.37, 0.29, 0.31, 0.35, 0.42, 0.29, 0.23, 0.27).$

	(1)	(2)	(3)	(4)	(5)
distribution	N	Ν	LN	LN	N/LN
process risk	1	1	1	✓	✓
parameter risk	X	1	X	1	\checkmark
model risk	X	X	X	X	\checkmark
estimated 99% VaR	0.466	0.513	0.494	0.571	0.558

Future work

Extend the method to allow for other distributions.

 \longrightarrow Easy for parameter risk; difficult for model risk.