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The problem considered in this presentation

Given data

x = (x1, . . . , xn): annual loss ratios

(
:=

total losses

total premiums

)
in the past n years.

Example: x1 = 0.33, x2 = 0.42, . . . .

Aim

Estimate the Value at Risk (VaR) of the future annual loss ratio y.

For 0 < α < 1 (e.g. α = 0.99), the 100α%VaR is the α-quantile of y,
i.e. the value y0 for which

Prob(y ≤ y0) = α.

[Assumption] x1, . . . , xn, y are i.i.d.

x: any one of x1, . . . , xn.
f(z): the probability density function of a random variable z.
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Conventional method

Typical conventional method

Assume that x is normally distributed: x ∼ N(µ, σ2).

Find the maximum likelihood estimators of µ, σ2:

µ̂ = mx =
x1 + · · ·+ xn

n
(sample mean),

σ̂2 = s2x =
1

n

n∑
i=1

(xi −mx)
2 ([biased] sample variance).

Estimate the 100α%VaR of the future annual loss ratio y by

µ̂+ zασ̂ = mx + zαsx (Equation (1)).

Here zα is the α-quantile of the standard normal distribution:

1√
2π

∫ zα

−∞
exp

(
−z2

2

)
dz = α.
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Drawback of the conventional method:
three types of risk

Risk being taken into account

(A) Process risk: caused by the stochastic nature of the model.

Risk NOT being taken into account

(B) Parameter risk: caused by the parameter estimation error.

(C) Model risk: caused by using a wrong model (distribution).

−→ We employ Bayesian inference to take (B) and (C) into account.
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Incorporating parameter risk

Likelihood: x|µ, τ ∼ N(µ, τ−1)
(
(µ, τ) ∈ R× R>0

)
.

Prior distribution: (µ, τ) ∼ NG(α, β, γ, δ) (α, β, δ > 0, γ ∈ R).
The normal-gamma distribution NG(α, β, γ, δ) is characterised by

τ ∼ Γ(α, β), i.e. f(τ) =
βα

Γ(α)
τα−1 exp(−βτ), and

µ|τ ∼ N

(
γ,

1

δτ

)
, i.e. f(µ|τ) =

√
δτ

2π
exp

(
−δτ(µ− γ)2

2

)
.

−→ Posterior distribution: (µ, τ)|x ∼ NG(α′, β′, γ′, δ′).
Here α′, β′, γ′, δ′ are functions of α, β, γ, δ and the data x.
(The normal-gamma distribution is the conjugate prior.)
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Incorporating parameter risk

Likelihood: x|µ, τ ∼ N(µ, τ−1).
Prior: (µ, τ) ∼ NG(α, β, γ, δ) (α, β, δ > 0, γ ∈ R).
−→ Posterior: (µ, τ)|x ∼ NG(α′, β′, γ′, δ′).

Use the improper prior f(µ, τ) ∝ τ−1, i.e. (α, β, γ, δ) =

(
−1

2
, 0, 0, 0

)
.

The posterior distribution is proper: (µ, τ) ∼ NG

(
n− 1

2
,
ns2x
2

,mx, n

)
.

Estimator of VaR of y: VaR of y|x (Equation (2)).
The distribution of y|x (posterior predictive distribution) turns
out to be (a linear transformation of) Student’s t-distribution.
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Towards incorporating model risk

Want to incorporate model risk. −→ Need another distribution.
−→ The log-normal distribution turns out to be convenient.

Conventional method (corresponding to Equation (1))

Distribution: Assume x ∼ LN(µ, σ2), i.e. log x|µ, τ ∼ N(µ, σ2).

Parameter estimation:
Use MLE to get µ̂ = mlog x and σ̂2 = s2log x.

Estimator of VaR of y: VaR of LN(µ̂, σ̂2) (Equation (3)).

Incorporating parameter risk (corresponding to Equation (2))

Likelihood: x|µ, τ ∼ LN(µ, τ−1).

Prior: f(µ, τ) ∝ τ−1 (same as before).

Posterior: (µ, τ)|x ∼ NG

(
n− 1

2
,
ns2log x

2
,mlog x, n

)
.

Estimator of VaR of y: VaR of y|x (Equation (4)).
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Incorporating model risk

Parameter space: {N,LN} × R× R>0

(
∋ (M,µ, τ)

)
(N: normal, LN: log-normal).

Likelihood: x|M,µ, τ ∼

{
N(µ, τ−1) if M = N;

LN(µ, τ−1) if M = LN.

Prior: f(M,µ, τ) ∝ τ−1 (possible because we use N and LN).

Posterior:

f(N |x) = p and (µ, τ)|(x,N) ∼ NG(∗, ∗, ∗, ∗);
f(LN |x) = 1− p and (µ, τ)|(x,LN) ∼ NG(∗, ∗, ∗, ∗),

where p and the parameters ∗ are (unspecified) functions of x.

Estimator of VaR of y: VaR of y|x (Equation (5)).
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Numerical example and future work

Numerical example

n = 10, x = (0.33, 0.42, 0.37, 0.29, 0.31, 0.35, 0.42, 0.29, 0.23, 0.27).

(1) (2) (3) (4) (5)

distribution N N LN LN N/LN

process risk ✓ ✓ ✓ ✓ ✓

parameter risk ✗ ✓ ✗ ✓ ✓

model risk ✗ ✗ ✗ ✗ ✓

estimated 99% VaR 0.466 0.513 0.494 0.571 0.558

Future work

Extend the method to allow for other distributions.
−→ Easy for parameter risk; difficult for model risk.
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