Knot Points of Typical Continuous Functions

Shingo SAITO

(斎藤新悟)

University College London

http://www.ucl.ac.uk/~ucahssa/

(Joint work with David Preiss)

Outline

Part I Background

Part II Statement of Main Theorem

Part III Outline of Proof

Part I Background

Typical continuous functions

```
Work in I := [0,1]. C(I) := \{f \colon I \longrightarrow \mathbb{R} \mid f \colon \text{ continuous} \} equipped with the supremum norm.
```

Definition

```
A typical f \in C(I) satisfies a property P \stackrel{\text{def.}}{\Longleftrightarrow} \{f \in C(I) \mid P \text{ holds} \} is residual (comeagre) in C(I).
```

Example

A typical $f \in C(I)$ is nowhere differentiable. What can we say about Dini derivatives of a typical $f \in C(I)$?

Dini derivatives

Definition (Dini derivatives)

For
$$f \in C(I)$$
 and $x \in I$,
$$D^+f(x) := \limsup_{y \searrow x} \frac{f(y) - f(x)}{y - x},$$

$$D_+f(x) := \liminf_{y \nearrow x} \frac{f(y) - f(x)}{y - x},$$

$$D^-f(x) := \limsup_{y \nearrow x} \frac{f(y) - f(x)}{y - x},$$

$$D_-f(x) := \liminf_{y \nearrow x} \frac{f(y) - f(x)}{y - x}.$$

Dini derivatives of a typical $f \in C(I)$

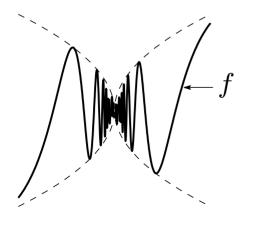
Theorem (Jarník, 1933)

A typical $f \in C(I)$ has the property that

$$D^+f(x) = D^-f(x) = \infty$$
 and

$$D_+f(x) = D_-f(x) = -\infty$$

for a.e. $x \in I$.



Such a point x is called a knot point of f.

Knot points of a typical $f \in C(I)$

For $f \in C(I)$,

 $N(f) := \{x \in I \mid x \text{ is NOT a knot point of } f\}.$

Jarník's theorem asserts that N(f) is null for a typical $f \in C(I)$.

In what sense of smallness is it true that N(f) is small for a typical $f \in C(I)$?

Theorem of Preiss and Zajíček

```
Theorem (Preiss and Zajíček, unpublished) For a \sigma-ideal \mathcal I on I, T.F.A.E.: (1) N(f) \in \mathcal I for a typical f \in C(I); (2) \mathcal I \cap \mathcal K is residual in \mathcal K.
```

Here

```
\mathcal{K} := \{K \subset I \mid K \text{ is closed}\} equipped with the Vietoris topology. (Hausdorff metric)
```

Problem

Problem

Characterise those families ${\mathcal A}$ of subsets of I for which

$$N(f) \in \mathcal{A}$$
 for a typical $f \in C(I)$.

Part II Statement of Main Theorem

An observation

Problem

Characterise $A \subset \mathcal{P}(I)$ for which $N(f) \in A$ for a typical $f \in C(I)$.

It is easy to see that N(f) is F_{σ} for all $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ for which $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ for which $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

It is easy to see that

$$\{\mathcal{F}\subset\mathcal{F}_{\sigma}\mid N(f)\in\mathcal{F} \text{ for a typical } f\in C(I)\}$$
 is a σ -filter of F_{σ} sets.

Residuality of families of \mathcal{F}_{σ} sets

Proposition (S)

For $\mathcal{F} \subset \mathcal{F}_{\sigma}$, T.F.A.E.:

(1)
$$\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$$
 is residual in $\mathcal{K}^{\mathbb{N}}$.

(2)
$$\{(K_n) \in \mathcal{K}_{\nearrow}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$$
 is residual in $\mathcal{K}_{\nearrow}^{\mathbb{N}}$.

Here

$$\mathcal{K}^{\mathbb{N}}_{\nearrow} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid K_1 \subset K_2 \subset \cdots \}.$$

We say that \mathcal{F} is residual in \mathcal{F}_{σ} if the above conditions hold.

Main theorem

Main Theorem

```
If \mathcal{F} is residual in \mathcal{F}_{\sigma},
then N(f) \in \mathcal{F} for a typical f \in C(I).
```

Conjecture

```
The converse is also true: if N(f) \in \mathcal{F} for a typical f \in C(I), then \mathcal{F} is residual in \mathcal{F}_{\sigma}.
```

Part III Outline of Proof

Residuality and Banach-Mazur game

X: a topological space, $S \subset X$.

Players I and II alternately choose a nonempty open set. They must choose a subset of the set chosen in the previous turn.

I:
$$U_1$$
 U_2 $0 \cdots$ II: V_1 V_1

Player II wins iff $\bigcap_{n=1}^{\infty} U_n = \bigcap_{n=1}^{\infty} V_n \subset S$.

<u>Fact</u>

Player II has a winning strategy

 \iff S is residual.

Outline of the proof

Let
$$\mathcal{A} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \}.$$

We know that \mathcal{A} is residual in $\mathcal{K}^{\mathbb{N}}_{\nearrow}$.

We want to show that

$$\{f \in C(I) \mid N(f) \in \mathcal{F}\}$$

is residual in C(I).

It suffices to show that

$$\mathcal{X} = \{ f \in C(I) \mid \exists (K_n) \in \mathcal{A} \quad N(f) = \bigcup_{n=1}^{\infty} K_n \}$$
 is residual in $C(I)$.

Outline of the proof

 \mathcal{A} is residual in $\mathcal{K}^{\mathbb{N}}$

Player II has a winning strategy in the Banach-Mazur game for $\mathcal{A}\subset\mathcal{K}^{\mathbb{N}}_{\nearrow}$

Player II has a winning strategy

in another game for $\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}$

 $\Downarrow \leftarrow difficult$

Player II has a winning strategy in the Banach-Mazur game for $\mathcal{X} \subset C(I)$

 $\downarrow \downarrow$

 \mathcal{X} is residual in C(I)