Knot Points of Typical Continuous Functions

Shingo SAITO University College London http://www.ucl.ac.uk/~ucahssa/

(Joint work with David Preiss)

Part I Background

Part II Statement of Main Theorem

Part III Outline of Proof

Part I Background

Typical continuous functions

Work in I := [0, 1]. $C(I) := \{f \colon I \longrightarrow \mathbb{R} \mid f \colon \text{continuous}\}$ equipped with the supremum norm.

Definition

A typical $f \in C(I)$ satisfies a property P $\stackrel{\text{def.}}{\iff} \{f \in C(I) \mid P \text{ holds}\}\$ is residual (comeagre) in C(I).

Example

A typical $f \in C(I)$ is nowhere differentiable. What can we say about Dini derivatives of a typical $f \in C(I)$? **Definition** (Dini derivatives) For $f \in C(I)$ and $x \in I$, $D^+f(x) := \limsup_{y \searrow x} \frac{f(y) - f(x)}{y - x},$ $D_{+}f(x) := \liminf_{y \searrow x} \frac{f(y) - f(x)}{y - x},$ $D^{-}f(x) := \limsup_{y \nearrow x} \frac{f(y) - f(x)}{y - x},$ $D_{-}f(x) := \liminf_{y \nearrow x} \frac{f(y) - f(x)}{y - x}.$

Dini derivatives of a typical $f \in C(I)$

Theorem (Jarník, 1933) A typical $f \in C(I)$ has the property that $D^+f(x) = D^-f(x) = \infty$ and $D_+f(x) = D_-f(x) = -\infty$

for a.e. $x \in I$.

Such a point x is called a knot point of f.

Knot points of a typical $f \in C(I)$

For $f \in C(I)$,

 $N(f) := \{ x \in I \mid x \text{ is NOT a knot point of } f \}.$

Jarník's theorem asserts that

N(f) is null for a typical $f \in C(I)$.

In what sense of smallness is it true that N(f) is small for a typical $f \in C(I)$?

Theorem of Preiss and Zajíček

Theorem (Preiss and Zajíček, unpublished) For a σ -ideal \mathcal{I} on I, T.F.A.E.: (1) $N(f) \in \mathcal{I}$ for a typical $f \in C(I)$; (2) $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} .

Here

 $\mathcal{K} := \{ K \subset I \mid K \text{ is closed} \}$

equipped with the Vietoris topology. (Hausdorff metric)

Problem

- Characterise those families \mathcal{A} of subsets of
- I for which
 - $N(f) \in \mathcal{A}$ for a typical $f \in C(I)$.

Part II Statement of Main Theorem

An observation

Problem

Characterise $\mathcal{A} \subset \mathcal{P}(I)$ for which $N(f) \in \mathcal{A}$ for a typical $f \in C(I)$.

It is easy to see that N(f) is F_{σ} for all $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ for which $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ for which $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

It is easy to see that

 $\{\mathcal{F} \subset \mathcal{F}_{\sigma} \mid N(f) \in \mathcal{F} \text{ for a typical } f \in C(I)\}$

is a σ -filter of F_{σ} sets.

Residuality of families of \mathcal{F}_{σ} sets

Proposition (S)
For
$$\mathcal{F} \subset \mathcal{F}_{\sigma}$$
, T.F.A.E.:
(1) $\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is
residual in $\mathcal{K}^{\mathbb{N}}$.
(2) $\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is
residual in $\mathcal{K}^{\mathbb{N}}$.

Here

$$\mathcal{K}^{\mathbb{N}}_{\nearrow} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid K_1 \subset K_2 \subset \cdots \}.$$

We say that \mathcal{F} is residual in \mathcal{F}_{σ} if the above conditions hold.

Main Theorem If \mathcal{F} is residual in \mathcal{F}_{σ} , then $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

Conjecture

The converse is also true: if $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$, then \mathcal{F} is residual in \mathcal{F}_{σ} .

Part III Outline of Proof

Residuality and Banach-Mazur game

X: a topological space, $S \subset X$.

Players I and II alternately choose a nonempty open set. They must choose a subset of the set chosen in the previous turn.

<u>Fact</u>

Player II has a winning strategy $\iff S$ is residual.

Outline of the proof

Let
$$\mathcal{A} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \}.$$

We know that \mathcal{A} is residual in $\mathcal{K}^{\mathbb{N}}_{\nearrow}$. We want to show that

$$\{f \in C(I) \mid N(f) \in \mathcal{F}\}$$

is residual in C(I).

It suffices to show that

$$\mathcal{X} = \left\{ f \in C(I) \mid \exists (K_n) \in \mathcal{A} \quad N(f) = \bigcup_{n=1}^{\infty} K_n \right\}$$

is residual in C(I).

```
Outline of the proof
```

```
\mathcal{A} is residual in \mathcal{K}^{\mathbb{N}}_{\nearrow}
                                   \downarrow
        Player II has a winning strategy
 in the Banach-Mazur game for \mathcal{A}\subset\mathcal{K}^{\mathbb{N}}_{\nearrow}
                                   \Downarrow \leftarrow similar to Proposition
        Player II has a winning strategy
          in another game for \mathcal{A} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow}
                                   \Downarrow \leftarrow \text{difficult}
        Player II has a winning strategy
in the Banach-Mazur game for \mathcal{X} \subset C(I)
                                   \downarrow
                  \mathcal{X} is residual in C(I)
```