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Part I

Background
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Typical continuous functions
Work in I := [0,1].
C(I) := {f : I −→ R | f : continuous}

equipped with the supremum norm.

Definition

A typical f ∈ C(I) satisfies a property P
def.⇐⇒ {f ∈ C(I) | P holds} is

residual (comeagre) in C(I).

Example
A typical f ∈ C(I) is nowhere differentiable.
What can we say about Dini derivatives of a

typical f ∈ C(I)?
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Dini derivatives

Definition (Dini derivatives)

For f ∈ C(I) and x ∈ I,

D+f(x) := lim sup
y↘x

f(y) − f(x)

y − x
,

D+f(x) := lim inf
y↘x

f(y) − f(x)

y − x
,

D−f(x) := lim sup
y↗x

f(y) − f(x)

y − x
,

D−f(x) := lim inf
y↗x

f(y) − f(x)

y − x
.
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Dini derivatives of a typical f ∈ C(I)

Theorem (Jarńık, 1933)

A typical f ∈ C(I) has the property that

D+f(x) = D−f(x) = ∞ and

D+f(x) = D−f(x) = −∞

for a.e. x ∈ I.

f

Such a point x is called a

knot point of f .
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Knot points of a typical f ∈ C(I)

For f ∈ C(I),

N(f) := {x ∈ I | x is NOT a knot point of f}.

Jarńık’s theorem asserts that

N(f) is null for a typical f ∈ C(I).

In what sense of smallness is it true that

N(f) is small for a typical f ∈ C(I)?
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Theorem of Preiss and Zaj́ıček

Theorem (Preiss and Zaj́ıček, unpublished)

For a σ-ideal I on I, T.F.A.E.:

(1) N(f) ∈ I for a typical f ∈ C(I);

(2) I ∩ K is residual in K.

Here

K := {K ⊂ I | K is closed}
equipped with the Vietoris topology.

(Hausdorff metric)
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Problem

Problem

Characterise those families A of subsets of

I for which

N(f) ∈ A for a typical f ∈ C(I).
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Part II

Statement of Main Theorem

9



An observation

Problem

Characterise A ⊂ P(I) for which

N(f) ∈ A for a typical f ∈ C(I).

It is easy to see that

N(f) is Fσ for all f ∈ C(I).

Problem

Characterise F ⊂ Fσ for which

N(f) ∈ F for a typical f ∈ C(I).
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Problem

Characterise F ⊂ Fσ for which

N(f) ∈ F for a typical f ∈ C(I).

It is easy to see that{
F ⊂ Fσ

∣∣ N(f) ∈ F for a typical f ∈ C(I)
}

is a σ-filter of Fσ sets.
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Residuality of families of Fσ sets

Proposition (S)

For F ⊂ Fσ, T.F.A.E.:

(1)
{
(Kn) ∈ KN ∣∣ ⋃∞

n=1 Kn ∈ F
}

is

residual in KN.

(2)
{
(Kn) ∈ KN

↗
∣∣ ⋃∞

n=1 Kn ∈ F
}

is

residual in KN
↗.

Here

KN
↗ :=

{
(Kn) ∈ KN ∣∣ K1 ⊂ K2 ⊂ · · ·

}
.

We say that F is residual in Fσ if the above
conditions hold.
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Main theorem

Main Theorem

If F is residual in Fσ,

then N(f) ∈ F for a typical f ∈ C(I).

Conjecture

The converse is also true:

if N(f) ∈ F for a typical f ∈ C(I),

then F is residual in Fσ.
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Part III

Outline of Proof
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Residuality and Banach-Mazur game
X: a topological space, S ⊂ X.

Players I and II alternately choose a nonempty

open set. They must choose a subset of the set

chosen in the previous turn.

I:

II:

U1⊃
V1

⊃
U2⊃

V1

⊃ · · ·

Player II wins iff
⋂∞

n=1 Un =
⋂∞

n=1 Vn ⊂ S.

Fact

Player II has a winning strategy

⇐⇒ S is residual.
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Outline of the proof

Let A :=
{
(Kn) ∈ KN

↗
∣∣ ⋃∞

n=1 Kn ∈ F
}
.

We know that A is residual in KN
↗.

We want to show that{
f ∈ C(I)

∣∣ N(f) ∈ F
}

is residual in C(I).

It suffices to show that

X =
{
f ∈ C(I)

∣∣ ∃(Kn) ∈ A N(f) =
⋃∞

n=1 Kn
}

is residual in C(I).
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Outline of the proof

A is residual in KN
↗

⇓
Player II has a winning strategy

in the Banach-Mazur game for A ⊂ KN
↗

⇓← similar to Proposition

Player II has a winning strategy

in another game for A ⊂ KN
↗

⇓← difficult

Player II has a winning strategy

in the Banach-Mazur game for X ⊂ C(I)

⇓
X is residual in C(I)
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