Residuality of Families of \mathcal{F}_{σ} Sets

Shingo SAITO

University College London

http://www.ucl.ac.uk/~ucahssa/

It is known that
a typical closed subset of $[0,1]$ is null $\cdots(*)$.
What does typical mean?
$\mathcal{K}:=\{K \subset[0,1] \mid K:$ closed $\}$ equipped with the Hausdorff metric d.

$$
(d(K, \emptyset):=1 \text { if } K \in \mathcal{K} \backslash\{\emptyset\})
$$

(*) means

$$
\begin{aligned}
\{K \in \mathcal{K} \mid K: \text { null }\} & \text { is residual } \\
\uparrow & \text { in } \mathcal{K} . \\
& \text { its complement is } \\
& \text { of first category }
\end{aligned}
$$

Question:
Is a typical \mathcal{F}_{σ} set null?
\longrightarrow What does typical mean in this context?
$\mathcal{F}_{\sigma}:=\left\{F \subset[0,1] \mid F\right.$ is $\left.\mathcal{F}_{\sigma}\right\}$
We want to define when $\mathcal{F} \subset \mathcal{F}_{\sigma}$ is residual.
Simplest idea: to topologise \mathcal{F}_{σ}
\longrightarrow does not work

We shall define residuality on \mathcal{F}_{σ} without topologising it.

Look at the surjection

$$
\begin{array}{ccc}
\mathcal{K}^{\mathbb{N}} & \longrightarrow & \mathcal{F}_{\sigma} \\
\stackrel{\Psi}{U} & & { }^{\Psi} \\
\left(K_{n}\right) & \longmapsto & \bigcup_{n=1}^{\infty} K_{n}
\end{array}
$$

Def
$\mathcal{F} \subset \mathcal{F}_{\sigma}$ is $\mathcal{K}^{\mathbb{N}}$-residual if

$$
\left\{\left(K_{n}\right) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_{n} \in \mathcal{F}\right\}
$$

is residual in $\mathcal{K}^{\mathbb{N}}$.

Another natural surjection:

$$
\begin{gathered}
\mathcal{K}^{\mathbb{N}}:=\left\{\left(K_{n}\right) \in \mathcal{K}^{\mathbb{N}} \mid K_{1} \subset K_{2} \subset \cdots\right\} \\
\mathcal{K}_{\nearrow}^{\mathbb{N}} \longrightarrow \mathcal{F}_{\sigma} ;\left(K_{n}\right) \longmapsto \bigcup_{n=1}^{\infty} K_{n}
\end{gathered}
$$

Def
$\mathcal{F} \subset \mathcal{F}_{\sigma}$ is $\mathcal{K}^{\mathbb{N}}{ }_{\nearrow}$-residual if

$$
\left\{\left(K_{n}\right) \in \mathcal{K}_{\nearrow}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_{n} \in \mathcal{F}\right\}
$$

is residual in $\mathcal{K}^{N}{ }^{N}$.

Thm 1
$\mathcal{F} \subset \mathcal{F}_{\sigma}$ is $\mathcal{K}^{\mathbb{N}}$-residual iff it is $\mathcal{K}^{\mathbb{N}}$-residual.
Thm 2
For a σ-ideal \mathcal{I} on $[0,1]$, T.F.A.E.:
(1) $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K}
(i.e. a typical closed set belongs to \mathcal{I});
(2) $\mathcal{I} \cap \mathcal{F}_{\sigma}$ is residual in \mathcal{F}_{σ}
(i.e. a typical \mathcal{F}_{σ} set belongs to \mathcal{I}).

Proof

Thm $1 \Longrightarrow$ Thm 2: easy
We use the Banach-Mazur game to prove Thm 1.

Banach-Mazur game

X : metric space, $S \subset X$.
Players (1) and (2) alternately choose a ball.
They must choose a subset of the ball chosen in the previous turn.

$$
\begin{array}{cccccccc}
B_{1} & \supset & B_{2} & \supset & B_{3} & \supset & B_{4} & \supset \cdots \\
\uparrow & & \uparrow & & \uparrow & & \uparrow & \\
(1) & (2) & & (1) & & (2) &
\end{array}
$$

Player (2) wins iff $\bigcap_{n=1}^{\infty} B_{n} \subset S$.

Fact

Player (2) has a winning strategy $\Longleftrightarrow S$ is residual in X.

Plan for the proof of Thm 1
($\mathcal{K}^{\mathbb{N}}$-residual $\Longrightarrow \mathcal{K}^{\mathbb{N}}$-residual)
$\mathcal{F} \subset \mathcal{F}_{\sigma}: \mathcal{K}^{\mathbb{N}}$-residual
$\mathcal{K}^{\mathbb{N}}$-game: $X=\mathcal{K}^{\mathbb{N}}$

$$
\bar{S}=\left\{\left(K_{n}\right) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_{n} \in \mathcal{F}\right\}
$$

(2) knows a winning strategy.
$\mathcal{K}^{\mathbb{N}}$-game: $X=\mathcal{K}^{\mathbb{N}}$

$$
\begin{aligned}
& \bar{S}=\left\{\left(K_{n}\right) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_{n} \in \mathcal{F}\right\} \\
& \text { (2) looks for a winning strategy. }
\end{aligned}
$$

How do the transfers go?
The centres matter; the radii do not. We need an idea.
The simple map

does not work at all.

