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Residuality of Families of Fσ Sets

Abstract

We give two natural definitions of residuality of families of Fσ sets,
which turn out to be equivalent. We also introduce the Banach-Mazur
game as a strong tool for proving theorems concerning residuality.

1 Introduction

This report is based upon the author’s lecture in the Symposium on his
preprint [2]. The reader is reminded that the file of the transparencies used in
the talk can be found at

http://www.ucl.ac.uk/~ucahssa/eng/maths/talks.html.

We shall always work in the unit interval I = [0, 1], though most of the
arguments are valid in any compact dense-in-itself metric space. For simplicity,
by a closed (resp. Fσ) set we mean a closed (resp. Fσ) subset of I, unless
otherwise stated.

In a metric space X, the open ball and the closed ball of centre x and
radius r will be denoted by BX(x, r) and B̄X(x, r) respectively.

2 Residuality of Families of Closed Sets

In this section we review the residuality of families of closed sets, which is a
motivation of this research.

We denote by K the family of all closed sets. For K ∈ K and r > 0, we
put K[r] =

⋃
x∈K B̄I(x, r). It is well-known that K is a compact metric space

with respect to the Hausdorff metric d defined by

d(K, L) = inf
({

r > 0
∣∣ K ⊂ L[r], L ⊂ K[r]

} ∪ {1}).
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Note that for K, L ∈ K and r ∈ (0, 1), we have d(K, L) 5 r if and only if
K ⊂ L[r] and L ⊂ K[r], even when either K or L is empty.

Let F denote the subset of K consisting of all finite subsets of I; this F is
of great use in studying K.

Proposition 2.1 The family F is dense in K.

Proof. It suffices to prove that for any given K ∈ K and ε ∈ (0, 1) we may
find P ∈ F with d(P, K) 5 ε. Since

⋃
x∈K[ε] BI(x, ε) ⊃ K and K is compact,

there exists a finite subset P of K[ε] for which
⋃

x∈P BI(x, ε) ⊃ K. It is easy
to see that d(P, K) 5 ε.

Definition 2.2 We say that a property P is fulfilled by a typical closed set if
the family of all closed sets satisfying P is residual in K.

Recall that a subset of a topological space is said to be residual if its
complement is of first category.

Many properties of a typical closed set have been investigated, and being
Lebesgue null is one of them:

Proposition 2.3 A typical closed set is Lebesgue null.

Proof. For each positive integer n, we put

Un =
⋃

A∈F\{∅}
BK

(
A,

1
n|A|

)
∪ {∅} ⊂ K,

where |A| denotes the cardinality of A. Since the measure of each set in Un

does not exceed 2/n, all sets in
⋂∞

n=1 Un are null. On the other hand, since
Proposition 2.1 shows that Un is open and dense in K, the intersection

⋂∞
n=1 Un

is residual in K. Thus we may conclude that a typical closed set is null.

3 Banach-Mazur Game

This section is devoted to the introduction of the Banach-Mazur game, which
is a powerful tool for studying residuality.

Definition 3.1 Let X be a metric space, S a subset of X, and A a dense
subset of X. The (X, S, A)-Banach-Mazur game is described as follows. Two
players, called Player I and Player II, alternately choose a closed ball whose
centre belongs to A, with the restriction that they must choose a subset of the
ball chosen in the previous turn. Player II will win if the intersection of all
the sets chosen by the players is contained in S; otherwise Player I will win.
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The following fact enables us to translate residuality in terms of the Banach-
Mazur game:

Fact 3.2 Player II has a winning strategy in the (X, S, A)-Banach-Mazur
game if and only if S is residual in X.

For a slight generalisation of the Banach-Mazur game and the proof of this
fact, we refer the reader to Theorem 1 in [1].

In order to show how this game is used to study residuality, we give another
proof of Proposition 2.3:

Proof of Proposition 2.3. Let N denote the family of all null sets in K.
Owing to Fact 3.2, we have only to find a winning strategy for Player II in
the (K,N ,F)-Banach Mazur game. The move of Player II in his nth turn is
determined as follows: if Player I has chosen B̄K(A, r) in the previous turn,
Player II replies B̄K(A, r′), where

r′ =

{
min

{
r, 1/n|A|} if A 6= ∅;

min{r, 1/n} if A = ∅.

Since the radii of the balls chosen by Player II converge to 0 and K is com-
pact, the intersection of all the balls chosen by the players is a singleton, say
{K}. We can see that K ∈ N by the same reasoning as in the first proof of
Proposition 2.3. Thus Player II is certain to win according to this strategy,
and the proof is complete.

4 Residuality of Families of Fσ Sets

This is the main section of this report, in which we shall state the main result
of [2]. Keeping Proposition 2.3 in mind, we may consider it natural to ask
whether a typical Fσ set is null. It goes without saying that in order to
answer this question we must define what ‘typical’ means. As we have seen in
Section 2, defining ‘a typical Fσ set’ is equivalent to defining the residuality
of families of Fσ sets. We shall give two natural definitions of the residuality.

We adopt the convention that every sequence begins with the term of
subscript one and the set N of all positive integers does not contain zero. The
set of all sequences of sets in K is denoted by KN and endowed with the product
topology. The closed subset KN↗ of KN is defined as the set of all increasing
sequences:

KN↗ =
{

(Kn) ∈ KN
∣∣ K1 ⊂ K2 ⊂ · · ·}.
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Definition 4.1 For a family F of Fσ sets, we put

KNF =

{
(Kn) ∈ KN

∣∣∣∣∣
∞⋃

n=1

Kn ∈ F
}

.

We say that F is KN-residual if KNF is residual in KN and that F is KN↗-residual
if KNF ∩KN

↗ is residual in KN↗.

The main theorem in [2] asserts that these two notions of residuality agree
with each other:

Theorem 4.2 (Main Theorem in [2]) A family of Fσ sets is KN-residual
if and only if it is KN↗-residual.

Moreover the following proposition holds:

Proposition 4.3 Let I be a σ-ideal on X. Then I ∩K is residual in K if and
only if I ∩ Fσ is KN-residual.

This proposition, together with Proposition 2.3, implies that a typical Fσ

set is Lebesgue null.
We shall not prove Theorem 4.2 here but shall prove Proposition 4.3. The

proof of this proposition we give below is different from that given in [2]; see
Remark 4.5 for details. We need a lemma to show the proposition.

Lemma 4.4 Let X and Y be complete metric spaces, and suppose that Y 6= ∅.
Then a subset A of X is residual if and only if A× Y is residual in X × Y .

Proof. We may assume that the distance between two points (a1, b1) and
(a2, b2) in X × Y is the sum of the distance between a1 and a2 in X and the
distance between b1 and b2 in Y .

The (X, A, X)-Banach Mazur game and the (X×Y, A×Y, X×Y )-Banach
Mazur game will be called the X-game and the X × Y -game respectively.

We shall prove only that if A×Y is residual in X×Y then A is residual in
X, since the converse can be shown similarly. Assume that A× Y is residual
in X × Y . Then Player II has a winning strategy in the X × Y -game. The
following strategy in the X-game makes Player II win; see Figure 1.

Suppose that Player I has chosen B̄X(x1, r1) in the first turn. Player II
takes an element y0 ∈ Y and imagines that Player I had chosen B̄X

(
(x1, y0), r′1

)
in the X ×Y -game, where r′1 is any positive real number less than min{r1, 1}.
Let B̄X×Y

(
(x2, y1), r2

)
denote the ball that Player II would reply according

to the strategy in the X ×Y -game. The real reply of Player II in the X-game
is B̄X(x2, r

′
2), where r′2 is any positive number less than min{r2, 1/2}.
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X-game X × Y -game
Player I: B̄X(x1, r1) −→ B̄X×Y

(
(x1, y0), r′1

) y
strategyPlayer II: B̄X(x2, r

′
2) ←− B̄X×Y

(
(x2, y1), r2

)
Player I: B̄X(x3, r3) −→ B̄X×Y

(
(x3, y1), r′3

) y
strategyPlayer II: B̄X(x4, r

′
4) ←− B̄X×Y

(
(x4, y2), r4

)
...

...
...

↓ ↓
x (x′, y)

Figure 1: Mechanism of the proof of Lemma 4.4

Suppose that Player I has chosen B̄X(x3, r3) in the next turn. Then
Player II imagines that Player I had chosen B̄X×Y

(
(x3, y1), r′3

)
in the X × Y -

game, where r′3 is less than min{r3, r2 − r′2, 1/3}. If B̄X×Y

(
(x4, y2), r4

)
is the

ball that Player II would reply according to the strategy, then the real reply
is B̄X(x4, r

′
4), where r′4 is less than min{r4, 1/4}.

Player II continues this procedure in deciding each reply. It is easy to
verify that B̄X(x2n, r′2n) and B̄X×Y

(
(x2n+1, yn), r′2n+1

)
are valid replies to

B̄X(x2n−1, r2n−1) and to B̄X×Y

(
(x2n, yn), r2n

)
respectively for all n ∈ N.

In either game, the intersection of the balls chosen by the players is a
singleton. Suppose that {x} and

{
(x′, y)

}
are the intersections. Then we have

x = lim
n→∞

xn and (x′, y) = lim
n→∞

(x2n, yn),

from which we infer that x = x′. It follows from (x′, y) ∈ A × Y that x ∈ A,
and this completes the proof.

Remark 4.5 This proof has the same mechanism as that of the main theorem
given in [2], though the latter is technically much more complicated.

In [2], a lemma similar to this one is proved without the Banach-Mazur
game; the Kuratowski-Ulam theorem is used instead.

Proof of Proposition 4.3. Since
{

(Kn) ∈ KN
∣∣∣∣∣
∞⋃

n=1

Kn ∈ I
}

=
{

(Kn) ∈ KN ∣∣ Kn ∈ I for every n ∈ N}

=
∞⋂

n=1

(K × · · · × K︸ ︷︷ ︸
n− 1 times

×(I ∩ K)×K ×K × · · · ),
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we see that I ∩Fσ is KN-residual if and only if (I ∩K)×K×K×· · · is residual
in KN. Lemma 4.4 shows that this is equivalent to the condition that I ∩K is
residual in K.
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