Shingo Saito, Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK (e-mail: ssaito@math.ucl.ac.uk)

Residuality of Families of \mathcal{F}_{σ} Sets

Abstract

We give two natural definitions of residuality of families of \mathcal{F}_{σ} sets, which turn out to be equivalent. We also introduce the Banach-Mazur game as a strong tool for proving theorems concerning residuality.

1 Introduction

This report is based upon the author's lecture in the Symposium on his preprint [2]. The reader is reminded that the file of the transparencies used in the talk can be found at

http://www.ucl.ac.uk/~ucahssa/eng/maths/talks.html.

We shall always work in the unit interval I = [0, 1], though most of the arguments are valid in any compact dense-in-itself metric space. For simplicity, by a closed (resp. \mathcal{F}_{σ}) set we mean a closed (resp. \mathcal{F}_{σ}) subset of I, unless otherwise stated.

In a metric space X, the open ball and the closed ball of centre x and radius r will be denoted by $B_X(x,r)$ and $\bar{B}_X(x,r)$ respectively.

2 Residuality of Families of Closed Sets

In this section we review the residuality of families of closed sets, which is a motivation of this research.

We denote by \mathcal{K} the family of all closed sets. For $K \in \mathcal{K}$ and r > 0, we put $K[r] = \bigcup_{x \in K} \overline{B}_I(x, r)$. It is well-known that \mathcal{K} is a compact metric space with respect to the Hausdorff metric d defined by

 $d(K,L) = \inf(\{r > 0 \mid K \subset L[r], L \subset K[r]\} \cup \{1\}).$

Key Words: Banach-Mazur game, residual

Mathematical Reviews subject classification: 54B20, 54E52

¹

Note that for $K, L \in \mathcal{K}$ and $r \in (0, 1)$, we have $d(K, L) \leq r$ if and only if $K \subset L[r]$ and $L \subset K[r]$, even when either K or L is empty.

Let \mathcal{F} denote the subset of \mathcal{K} consisting of all finite subsets of I; this \mathcal{F} is of great use in studying \mathcal{K} .

Proposition 2.1 The family \mathcal{F} is dense in \mathcal{K} .

Proof. It suffices to prove that for any given $K \in \mathcal{K}$ and $\varepsilon \in (0, 1)$ we may find $P \in \mathcal{F}$ with $d(P, K) \leq \varepsilon$. Since $\bigcup_{x \in K[\varepsilon]} B_I(x, \varepsilon) \supset K$ and K is compact, there exists a finite subset P of $K[\varepsilon]$ for which $\bigcup_{x \in P} B_I(x, \varepsilon) \supset K$. It is easy to see that $d(P, K) \leq \varepsilon$.

Definition 2.2 We say that a property P is fulfilled by a *typical* closed set if the family of all closed sets satisfying P is residual in \mathcal{K} .

Recall that a subset of a topological space is said to be residual if its complement is of first category.

Many properties of a typical closed set have been investigated, and being Lebesgue null is one of them:

Proposition 2.3 A typical closed set is Lebesgue null.

Proof. For each positive integer n, we put

$$\mathcal{U}_n = \bigcup_{A \in \mathcal{F} \setminus \{\emptyset\}} B_{\mathcal{K}}\left(A, \frac{1}{n|A|}\right) \cup \{\emptyset\} \subset \mathcal{K},$$

where |A| denotes the cardinality of A. Since the measure of each set in \mathcal{U}_n does not exceed 2/n, all sets in $\bigcap_{n=1}^{\infty} \mathcal{U}_n$ are null. On the other hand, since Proposition 2.1 shows that \mathcal{U}_n is open and dense in \mathcal{K} , the intersection $\bigcap_{n=1}^{\infty} \mathcal{U}_n$ is residual in \mathcal{K} . Thus we may conclude that a typical closed set is null.

3 Banach-Mazur Game

This section is devoted to the introduction of the Banach-Mazur game, which is a powerful tool for studying residuality.

Definition 3.1 Let X be a metric space, S a subset of X, and A a dense subset of X. The (X, S, A)-Banach-Mazur game is described as follows. Two players, called Player I and Player II, alternately choose a closed ball whose centre belongs to A, with the restriction that they must choose a subset of the ball chosen in the previous turn. Player II will win if the intersection of all the sets chosen by the players is contained in S; otherwise Player I will win. The following fact enables us to translate residuality in terms of the Banach-Mazur game:

Fact 3.2 Player II has a winning strategy in the (X, S, A)-Banach-Mazur game if and only if S is residual in X.

For a slight generalisation of the Banach-Mazur game and the proof of this fact, we refer the reader to Theorem 1 in [1].

In order to show how this game is used to study residuality, we give another proof of Proposition 2.3:

Proof of Proposition 2.3. Let \mathcal{N} denote the family of all null sets in \mathcal{K} . Owing to Fact 3.2, we have only to find a winning strategy for Player II in the $(\mathcal{K}, \mathcal{N}, \mathcal{F})$ -Banach Mazur game. The move of Player II in his *n*th turn is determined as follows: if Player I has chosen $\bar{B}_{\mathcal{K}}(A, r)$ in the previous turn, Player II replies $\bar{B}_{\mathcal{K}}(A, r')$, where

$$r' = \begin{cases} \min\{r, 1/n|A|\} & \text{if } A \neq \emptyset; \\ \min\{r, 1/n\} & \text{if } A = \emptyset. \end{cases}$$

Since the radii of the balls chosen by Player II converge to 0 and \mathcal{K} is compact, the intersection of all the balls chosen by the players is a singleton, say $\{K\}$. We can see that $K \in \mathcal{N}$ by the same reasoning as in the first proof of Proposition 2.3. Thus Player II is certain to win according to this strategy, and the proof is complete.

4 Residuality of Families of \mathcal{F}_{σ} Sets

This is the main section of this report, in which we shall state the main result of [2]. Keeping Proposition 2.3 in mind, we may consider it natural to ask whether a typical \mathcal{F}_{σ} set is null. It goes without saying that in order to answer this question we must define what 'typical' means. As we have seen in Section 2, defining 'a typical \mathcal{F}_{σ} set' is equivalent to defining the residuality of families of \mathcal{F}_{σ} sets. We shall give two natural definitions of the residuality.

We adopt the convention that every sequence begins with the term of subscript one and the set \mathbb{N} of all positive integers does not contain zero. The set of all sequences of sets in \mathcal{K} is denoted by $\mathcal{K}^{\mathbb{N}}$ and endowed with the product topology. The closed subset $\mathcal{K}^{\mathbb{N}}_{\nearrow}$ of $\mathcal{K}^{\mathbb{N}}$ is defined as the set of all increasing sequences:

$$\mathcal{K}^{\mathbb{N}}_{\nearrow} = \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid K_1 \subset K_2 \subset \cdots \}.$$

Definition 4.1 For a family \mathcal{F} of \mathcal{F}_{σ} sets, we put

$$\mathcal{K}_{\mathcal{F}}^{\mathbb{N}} = \left\{ \left(K_n \right) \in \mathcal{K}^{\mathbb{N}} \; \middle| \; \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \right\}.$$

We say that \mathcal{F} is $\mathcal{K}^{\mathbb{N}}$ -residual if $\mathcal{K}^{\mathbb{N}}_{\mathcal{F}}$ is residual in $\mathcal{K}^{\mathbb{N}}$ and that \mathcal{F} is $\mathcal{K}^{\mathbb{N}}_{\mathcal{F}}$ -residual if $\mathcal{K}^{\mathbb{N}}_{\mathcal{F}} \cap \mathcal{K}^{\mathbb{N}}_{\mathcal{F}}$ is residual in $\mathcal{K}^{\mathbb{N}}_{\mathcal{F}}$.

The main theorem in [2] asserts that these two notions of residuality agree with each other:

Theorem 4.2 (Main Theorem in [2]) A family of \mathcal{F}_{σ} sets is $\mathcal{K}^{\mathbb{N}}$ -residual if and only if it is $\mathcal{K}^{\mathbb{N}}_{\nearrow}$ -residual.

Moreover the following proposition holds:

Proposition 4.3 Let \mathcal{I} be a σ -ideal on X. Then $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} if and only if $\mathcal{I} \cap \mathcal{F}_{\sigma}$ is $\mathcal{K}^{\mathbb{N}}$ -residual.

This proposition, together with Proposition 2.3, implies that a typical \mathcal{F}_{σ} set is Lebesgue null.

We shall not prove Theorem 4.2 here but shall prove Proposition 4.3. The proof of this proposition we give below is different from that given in [2]; see Remark 4.5 for details. We need a lemma to show the proposition.

Lemma 4.4 Let X and Y be complete metric spaces, and suppose that $Y \neq \emptyset$. Then a subset A of X is residual if and only if $A \times Y$ is residual in $X \times Y$.

Proof. We may assume that the distance between two points (a_1, b_1) and (a_2, b_2) in $X \times Y$ is the sum of the distance between a_1 and a_2 in X and the distance between b_1 and b_2 in Y.

The (X, A, X)-Banach Mazur game and the $(X \times Y, A \times Y, X \times Y)$ -Banach Mazur game will be called the X-game and the $X \times Y$ -game respectively.

We shall prove only that if $A \times Y$ is residual in $X \times Y$ then A is residual in X, since the converse can be shown similarly. Assume that $A \times Y$ is residual in $X \times Y$. Then Player II has a winning strategy in the $X \times Y$ -game. The following strategy in the X-game makes Player II win; see Figure 1.

Suppose that Player I has chosen $B_X(x_1, r_1)$ in the first turn. Player II takes an element $y_0 \in Y$ and imagines that Player I had chosen $\bar{B}_X((x_1, y_0), r'_1)$ in the $X \times Y$ -game, where r'_1 is any positive real number less than $\min\{r_1, 1\}$. Let $\bar{B}_{X \times Y}((x_2, y_1), r_2)$ denote the ball that Player II would reply according to the strategy in the $X \times Y$ -game. The real reply of Player II in the X-game is $\bar{B}_X(x_2, r'_2)$, where r'_2 is any positive number less than $\min\{r_2, 1/2\}$.

$$\begin{array}{cccc} X \text{-game} & X \times Y \text{-game} \\ \text{Player II:} & \bar{B}_X(x_1, r_1) & \longrightarrow & \bar{B}_{X \times Y}((x_1, y_0), r_1') \\ \text{Player II:} & \bar{B}_X(x_2, r_2') & \longleftarrow & \bar{B}_{X \times Y}((x_2, y_1), r_2) \\ \text{Player II:} & \bar{B}_X(x_3, r_3) & \longrightarrow & \bar{B}_{X \times Y}((x_3, y_1), r_3') \\ \text{Player II:} & \bar{B}_X(x_4, r_4') & \longleftarrow & \bar{B}_{X \times Y}((x_4, y_2), r_4) \\ \vdots & \vdots & \vdots & & \vdots \\ & \downarrow & & \downarrow \\ & x & & & (x', y) \end{array}$$

Figure 1: Mechanism of the proof of Lemma 4.4

Suppose that Player I has chosen $\bar{B}_X(x_3, r_3)$ in the next turn. Then Player II imagines that Player I had chosen $\bar{B}_{X\times Y}((x_3, y_1), r'_3)$ in the $X \times Y$ game, where r'_3 is less than min $\{r_3, r_2 - r'_2, 1/3\}$. If $\bar{B}_{X\times Y}((x_4, y_2), r_4)$ is the ball that Player II would reply according to the strategy, then the real reply is $\bar{B}_X(x_4, r'_4)$, where r'_4 is less than min $\{r_4, 1/4\}$.

Player II continues this procedure in deciding each reply. It is easy to verify that $\bar{B}_X(x_{2n}, r'_{2n})$ and $\bar{B}_{X \times Y}((x_{2n+1}, y_n), r'_{2n+1})$ are valid replies to $\bar{B}_X(x_{2n-1}, r_{2n-1})$ and to $\bar{B}_{X \times Y}((x_{2n}, y_n), r_{2n})$ respectively for all $n \in \mathbb{N}$.

In either game, the intersection of the balls chosen by the players is a singleton. Suppose that $\{x\}$ and $\{(x', y)\}$ are the intersections. Then we have

$$x = \lim_{n \to \infty} x_n$$
 and $(x', y) = \lim_{n \to \infty} (x_{2n}, y_n),$

from which we infer that x = x'. It follows from $(x', y) \in A \times Y$ that $x \in A$, and this completes the proof.

Remark 4.5 This proof has the same mechanism as that of the main theorem given in [2], though the latter is technically much more complicated.

In [2], a lemma similar to this one is proved without the Banach-Mazur game; the Kuratowski-Ulam theorem is used instead.

Proof of Proposition 4.3. Since

$$\left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \middle| \bigcup_{n=1}^{\infty} K_n \in \mathcal{I} \right\} = \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \middle| K_n \in \mathcal{I} \text{ for every } n \in \mathbb{N} \right\}$$
$$= \bigcap_{n=1}^{\infty} \left(\underbrace{\mathcal{K} \times \cdots \times \mathcal{K}}_{n-1 \text{ times}} \times (\mathcal{I} \cap \mathcal{K}) \times \mathcal{K} \times \mathcal{K} \times \cdots \right),$$

we see that $\mathcal{I} \cap \mathcal{F}_{\sigma}$ is $\mathcal{K}^{\mathbb{N}}$ -residual if and only if $(\mathcal{I} \cap \mathcal{K}) \times \mathcal{K} \times \mathcal{K} \times \cdots$ is residual in $\mathcal{K}^{\mathbb{N}}$. Lemma 4.4 shows that this is equivalent to the condition that $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} .

References

- John C. Oxtoby, The Banach-Mazur Game and Banach Category Theorem, Contributions to the Theory of Games, vol. 3, Ann. of Math. Stud. 39 (1957), 159–163, Princeton University Press.
- [2] Shingo Saito, Residuality of Families of \mathcal{F}_{σ} Sets, math.GN/0506379, submitted.