Typical \mathcal{F}_{σ} Sets and Typical Continuous Functions (Knot Points of Typical Continuous Functions) Shingo SAITO

> (斎藤新悟) University College London http://www.ucl.ac.uk/~ucahssa/

Part I Background

Part II Statement of Main Theorem

Part III Sketch of Proof

Part I Background

Typical continuous functions

Work in I := [0, 1]. $C(I) := \{f \colon I \longrightarrow \mathbb{R} \mid f \colon \text{continuous}\}$ equipped with the supremum norm.

Definition

A typical $f \in C(I)$ satisfies a property P(f) $\stackrel{\text{def.}}{\iff} \{f \in C(I) \mid P(f) \text{ holds}\}\$ is residual in C(I).

Example

A typical $f \in C(I)$ is nowhere differentiable. What can we say about Dini derivatives of a

typical $f \in C(I)$?

Definition (Dini derivatives) For $f \in C(I)$ and $x \in I$, $D^+f(x) := \limsup_{y \searrow x} \frac{f(y) - f(x)}{y - x},$ $D_{+}f(x) := \liminf_{y \searrow x} \frac{f(y) - f(x)}{y - x},$ $D^{-}f(x) := \limsup_{y \nearrow x} \frac{f(y) - f(x)}{y - x},$ $D_{-}f(x) := \liminf_{y \nearrow x} \frac{f(y) - f(x)}{y - x}.$

Dini derivatives of a typical $f \in C(I)$

Theorem (Jarník, 1933) A typical $f \in C(I)$ has the property that $D^+f(x) = D^-f(x) = \infty$ and $D_+f(x) = D_-f(x) = -\infty$

for a.e. $x \in I$.

Such a point x is called a knot point of f.

Knot points of a typical $f \in C(I)$

For $f \in C(I)$,

 $N(f) := \{x \in I \mid x \text{ is NOT a knot point of } f\}.$

Jarník's theorem asserts that

N(f) is null for a typical $f \in C(I)$.

In what sense of smallness is it true that N(f) is small for a typical $f \in C(I)$?

Theorem of Preiss and Zajíček

Theorem (Preiss and Zajíček, unpublished) For a σ -ideal \mathcal{I} on I, T.F.A.E.: (1) $N(f) \in \mathcal{I}$ for a typical $f \in C(I)$; (2) $\mathcal{I} \cap \mathcal{K}$ is residual in \mathcal{K} .

Here

 $\mathcal{K} := \{ K \subset I \mid K \text{ is closed} \}$

equipped with the Vietoris topology. (Hausdorff metric)

Problem

Characterise families ${\mathcal A}$ of subsets of I for which

 $N(f) \in \mathcal{A}$ for a typical $f \in C(I)$.

Part II Statement of Main Theorem

An observation

Problem

Characterise $\mathcal{A} \subset \mathcal{P}(I)$ for which $N(f) \in \mathcal{A}$ for a typical $f \in C(I)$.

It is easy to see that N(f) is \mathcal{F}_{σ} for all $f \in C(I)$.

Problem

Characterise $\mathcal{F} \subset \mathcal{F}_{\sigma}$ for which $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$.

 $\begin{array}{l} \underline{\text{Main Theorem}} \ (\mathsf{S}) \\ & \quad \mathsf{For} \ \mathcal{F} \subset \mathcal{F}_{\sigma}, \ \mathsf{T}.\mathsf{F}.\mathsf{A}.\mathsf{E}.: \\ (1) \quad N(f) \in \mathcal{F} \ \text{for a typical } f \in C(I); \\ (2) \quad \mathcal{F} \ \text{is residual in } \mathcal{F}_{\sigma} \\ & \quad (F \in \mathcal{F} \ \text{for a typical } F \in \mathcal{F}_{\sigma}). \end{array}$

What does residual mean in this context?

Residuality of families of \mathcal{F}_{σ} sets

Proposition (S)
For
$$\mathcal{F} \subset \mathcal{F}_{\sigma}$$
, T.F.A.E.:
(1) $\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is
residual in $\mathcal{K}^{\mathbb{N}}$.
(2) $\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is
residual in $\mathcal{K}^{\mathbb{N}}$.

Here

$$\mathcal{K}^{\mathbb{N}} := \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid K_1 \subset K_2 \subset \cdots \}.$$

We say that \mathcal{F} is residual in \mathcal{F}_{σ} if the above conditions hold.

Part III Sketch of Proof

Statement of main theorem

Main Theorem
For
$$\mathcal{F} \subset \mathcal{F}_{\sigma}$$
, T.F.A.E.:
(1) $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$;
(2) $\{(K_n) \in \mathcal{K}^{\mathbb{N}}_{\nearrow} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$
is residual in $\mathcal{K}^{\mathbb{N}}_{\nearrow}$.

<u>Lemma</u>

We may find a 'good' $\mathbb{X} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow} \times C(I)$ s.t.

- $((K_n), f) \in \mathbb{X}$ implies $\bigcup_{n=1}^{\infty} K_n = N(f);$
- if $\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow}$ is residual, then for a typical $f \in C(I)$,

$$\exists (K_n) \in \mathcal{A} \quad ((K_n), f) \in \mathbb{X}.$$

The proof of this lemma

- is very complicated and
- uses the Banach-Mazur game.

$$\mathcal{A} := \left\{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F} \right\}$$

is residual.

By Lem, for a typical
$$f \in C(I)$$
,
 $\exists (K_n) \in \mathcal{A} \quad ((K_n), f) \in \mathbb{X},$
 $\therefore N(f) = \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}.$

Thm (2)
$$\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$$
 is residual \Rightarrow (1) $N(f) \in \mathcal{F}$ for a typical f .

 $\underline{\mathsf{Lem}} \quad \mathbb{X} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow} \times C(I) \text{ satisfies}$

•
$$((K_n), f) \in \mathbb{X} \Rightarrow \bigcup_{n=1}^{\infty} K_n = N(f);$$

•
$$\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow}$$
 is residual
 \Rightarrow for a typical $f \in C(I)$, $\exists (K_n) \in \mathcal{A}((K_n), f) \in \mathbb{X}$.

$(1) \Rightarrow (2)$

Suppose $N(f) \in \mathcal{F}$ for a typical $f \in C(I)$. Take a dense \mathcal{G}_{δ} set $G \subset \{f \in C(I) \mid N(f) \in \mathcal{F}\}$. $\mathcal{A} := \{(K_n) \in \mathcal{K}^{\mathbb{N}}_{\nearrow} \mid \exists f \in G \quad ((K_n), f) \in \mathbb{X}\}.$

 $(K_n) \in \mathcal{A}$ implies $\bigcup_{n=1}^{\infty} K_n = N(f) \in \mathcal{F}$. Thus it suffices to show that \mathcal{A} is residual.

Thm (1)
$$N(f) \in \mathcal{F}$$
 for a typical f
 \Rightarrow (2) $\{(K_n) \in \mathcal{K}^{\mathbb{N}}_{\nearrow} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is residual.

<u>Lem</u> $\mathbb{X} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow} \times C(I)$ satisfies

•
$$((K_n), f) \in \mathbb{X} \Rightarrow \bigcup_{n=1}^{\infty} K_n = N(f);$$

•
$$\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}_{\nearrow}$$
 is residual
 \Rightarrow for a typical $f \in C(I)$, $\exists (K_n) \in \mathcal{A}((K_n), f) \in \mathbb{X}$.

 \mathcal{A} turns out to be analytic (since \mathbb{X} is 'good'). $\therefore \mathcal{A}$ has the Baire Property.

 $\therefore \mathcal{A}$ is either meagre or residual

(topological 0-1 law).

Suppose \mathcal{A} is meagre. Then \mathcal{A}^c is residual.

Thm (1)
$$N(f) \in \mathcal{F}$$
 for a typical f
 \Rightarrow (2) $\{(K_n) \in \mathcal{K}^{\mathbb{N}} \mid \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is residual.
Lem $\mathbb{X} \subset \mathcal{K}^{\mathbb{N}} \times C(I)$ satisfies
• $((K_n), f) \in \mathbb{X} \Rightarrow \bigcup_{n=1}^{\infty} K_n = N(f);$
• $\mathcal{A} \subset \mathcal{K}^{\mathbb{N}}$ is residual
 \Rightarrow for a typical $f \in C(I), \exists (K_n) \in \mathcal{A} ((K_n), f) \in \mathbb{X}.$

Is $\mathcal{A} = \{ (K_n) \in \mathcal{K}^{\mathbb{N}} \mid \exists f \in G \quad ((K_n), f) \in \mathbb{X} \}$ residual?

By Lem, for a typical $f \in C(I)$, $\exists (K_n) \in \mathcal{A}^c \quad ((K_n), f) \in \mathbb{X}.$

Thus

$$\exists f \in G \ \exists (K_n) \in \mathcal{A}^c \ ((K_n), f) \in \mathbb{X}.$$

This contradicts the definition of \mathcal{A} .

Thm (1)
$$N(f) \in \mathcal{F}$$
 for a typical f
 \Rightarrow (2) $\{(K_n) \in \mathcal{K}_{\nearrow}^{\mathbb{N}} | \bigcup_{n=1}^{\infty} K_n \in \mathcal{F}\}$ is residual.
Lem $\mathbb{X} \subset \mathcal{K}_{\nearrow}^{\mathbb{N}} \times C(I)$ satisfies
• $((K_n), f) \in \mathbb{X} \Rightarrow \bigcup_{n=1}^{\infty} K_n = N(f);$
• $\mathcal{A} \subset \mathcal{K}_{\nearrow}^{\mathbb{N}}$ is residual
 \Rightarrow for a typical $f \in C(I), \exists (K_n) \in \mathcal{A} ((K_n), f) \in \mathbb{X}.$

 $\mathcal{A}^{c} = \{(K_{n}) \in \mathcal{K}^{\mathbb{N}} \mid \forall f \in G ((K_{n}), f) \notin \mathbb{X}\}$ is assumed to be residual.