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1 Knot points of typical continuous functions

We begin by giving the statement of the main theorem of the author’s PhD thesis [Sa1],
established jointly with David Preiss. For the background and historical remarks, see
[Sa1].

We write I for the unit interval [0, 1] and C(I) for the set of all real-valued con-
tinuous functions defined on I.

Definition 1.1.
Let f ∈ C(I). A point a ∈ I is called a knot point of f if

lim sup
x↓a

f(x) − f(a)

x − a
= lim sup

x↑a

f(x) − f(a)

x − a
= ∞,

lim inf
x↓a

f(x) − f(a)

x − a
= lim inf

x↑a

f(x) − f(a)

x − a
= −∞.

Here if a is an endpoint of the interval I, then we ignore the two undefined limits.
We denote by N(f) the set of all points in I that are not knot points of f .

If f ∈ C(I) is differentiable, then f has no knot points, so N(f) = I. However
most f ∈ C(I) are so bad that N(f) is fairly small. To make this statement precise,
we introduce the term typical. We give C(I) the topology induced by the supremum
norm.

Definition 1.2.
We say that a typical (generic) f ∈ C(I) has property P if the set of all f ∈ C(I)

with property P is residual in C(I).

Recall that a subset A of a topological space is said to be nowhere dense if the
closure of A has empty interior; A is meagre (first category) if A can be expressed as
a countable union of nowhere dense sets; A is residual (comeagre) if its complement
Ac is meagre.
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We shall characterise those families F of subsets of I for which N(f) ∈ F for a
typical f ∈ C(I). Since N(f) is always an Fσ subset of I, we may assume that F is a
subfamily of Fσ, the family of all Fσ subsets of I. For a subfamily F of Fσ, our main
theorem asserts that N(f) ∈ F for a typical f ∈ C(I) if and only if F is large.

To define what it means for F to be large, we write K for the family of all closed
subsets of I, and equip K with the Hausdorff metric d. Recall that, writing B(x, r)
for the open ball of centre x and radius r, we define the Hausdorff metric by

d(K,L) = inf

{
r > 0

∣∣∣∣ ⋃
x∈K

B(x, r) ⊃ L,
⋃
x∈L

B(x, r) ⊃ K

}
for nonempty K,L ∈ K, and d(K, ∅) = 1 for K ∈ K \ {∅}. Its countable product KN

is furnished with the product topology.

Definition 1.3 ([Sa2, Definition 1.2]).
A subfamily F of Fσ is said to be residual if {(Kn) ∈ KN |

⋃∞
n=1 Kn ∈ F} is a

residual subset of KN.

Theorem 1.4 ([Sa1, Main Theorem]).
A subfamily F of Fσ is residual if and only if N(f) ∈ F for a typical f ∈ C(I).

2 A variant of the Banach-Mazur game

A complete proof of Theorem 1.4 can be found in [Sa1]. An important ingredient of
the proof there is to rephrase residuality in terms of the Banach-Mazur game.

Definition 2.1.
For a topological space X and its subset S, the (X, S)-Banach-Mazur game is

described as follows. Players I and II alternately choose a nonempty open subset of
X:

I: U1 U2

II: V1 V2
· · ·

where Um and Vm are nonempty open subsets of X for all m ∈ N, with the restriction
that Vm must be contained in Um for every m ∈ N and Um must be contained in
Vm−1 for every m ∈ N \ {1}. Player II wins if

⋂∞
m=1 Vm ⊂ S; otherwise Player I wins.

Theorem 2.2 ([Ox]).
In the (X,S)-Banach-Mazur game, Player II has a winning strategy if and only if

S is residual in X.
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In [Sa1] we first use the Banach-Mazur game to prove that if F is residual, then
N(f) ∈ F for a typical f ∈ C(I); then we invoke results in descriptive set theory to
show the converse. In order to make the descriptive set-theoretical results applicable,
we have to prove a slightly stronger statement than the first implication. However
the first implication itself can be proved in a simpler manner by using a variant of the
Banach-Mazur game. Unfortunately the simpler proof is still too complicated to be
included here, so what we shall do below is to detail the variant of the Banach-Mazur
game used there.

We first introduce an equivalent variant of the Banach-Mazur game:

Proposition 2.3.
Let X be a topological space, S a subset of X, and A a family of pairs of a point

of X and its open neighbourhood. Suppose that for every nonempty open subset O
of X there exists (x, U) ∈ A with U ⊂ O. We consider the following game. Players
I and II alternately choose an element of A:

I: (x1, U1) (x2, U2)
II: (y1, V1) (y2, V2)

· · ·

where (xm, Um), (ym, Vm) ∈ A for all m ∈ N, with the restriction that ym must belong
to Um for every m ∈ N and xm must belong to Vm−1 for every m ∈ N\{1}. Player II
wins if

⋂∞
m=1 Vm ⊂ S; otherwise Player I wins.

Then Player II has a winning strategy in this game if and only if S is residual in
X.

Proof.
Suppose first that S is residual in X. Then Player II has a winning strategy in

the (X,S)-Banach-Mazur game by Theorem 2.2. Using the winning strategy in the
Banach-Mazur game, Player II can obtain a winning strategy in our game in the
following manner:

our game Banach-Mazur game

I: (x1, U1) −→ Ũ1

II: (y1, V1) ←− Ṽ1

I: (x2, U2) −→ Ũ2

II: (y2, V2) ←− Ṽ2
...

...

Broadly speaking, given the mth move (xm, Um) of Player I in our game, Player II
transfers it to the Banach-Mazur game to obtain the mth imaginary move Ũm of
Player I, and then transfers to our game the imaginary reply Ṽm given by the winning
strategy to get her real reply (ym, Vm). The details of the transfers are as follows:
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Ũm = Um ∩ Vm−1 (Ũm = Um if m = 1), and (ym, Vm) is an element of A such that
Vm ⊂ Ṽm. Note that this procedure gives legal moves.

Obeying this method, Player II can win because
⋂∞

m=1 Vm ⊂
⋂∞

m=1 Ṽm ⊂ S, where
the latter inclusion follows from the fact that the sets Ṽm were given by the winning
strategy in the Banach-Mazur game.

The converse can be proved in the same way.

The residuality of subfamilies of Fσ has been defined via the space KN in Def-
inition 1.3, but the subspace KN

↗ of increasing sequences gives an equally natural
definition:

Definition 2.4 ([Sa2, Definition 1.2]).
Let KN

↗ denote the set of all increasing sequences in KN:

KN
↗ = {(Kn) ∈ KN | K1 ⊂ K2 ⊂ · · · },

equipped with the relative topology. A subfamily F of Fσ is said to be ↗-residual
if {(Kn) ∈ KN

↗ |
⋃∞

n=1 Kn ∈ F} is a residual subset of KN
↗.

It is shown in [Sa2] that the two definitions of residuality are equivalent.

Definition 2.5.
For N ∈ N and t > 0, we say that (Kn) ∈ KN is (N, t)-close (resp. (N, t)-

↗-close) to (Ln) ∈ KN if d(Kn, Ln) < t (resp. d(
⋃n

j=1 Kj,
⋃n

j=1 Lj) < t) for n =
1, . . . , N .

Remark 2.6.
The (N, t)-closeness implies the (N, t)-↗-closeness, but the converse is not true in

general.

Definition 2.7.
For a subfamily F of Fσ, we define three games called the disjoint game, the

monotone game, and the mixed game.
Let D denote the set of all sequences whose terms are pairwise disjoint finite subsets

of I. In any of these games, Players I and II alternately choose a sequence in D, a
positive integer, and a positive real number:

I: (K
(1)
n ), a(1), r(1) (K

(2)
n ), a(2), r(2)

II: (L
(1)
n ), b(1), s(1) (L

(2)
n ), b(2), s(2)

· · ·

where (K
(m)
n ), (L

(m)
n ) ∈ D, a(m), b(m) ∈ N, and r(m), s(m) > 0 for all m ∈ N.
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(1) In the disjoint game, (L
(m)
n ) must be (a(m), r(m))-close to (K

(m)
n ) for every m ∈ N

and (K
(m)
n ) must be (b(m−1), s(m−1))-close to (L

(m−1)
n ) for every m ∈ N \ {1}.

Player II wins if
⋃∞

n=1 Kn ∈ F whenever (Kn) ∈ KN is (b(m), s(m))-close to

(L
(m)
n ) for all m ∈ N; otherwise Player I wins.

(2) In the monotone game, (L
(m)
n ) must be (a(m), r(m))-↗-close to (K

(m)
n ) for every

m ∈ N and (K
(m)
n ) must be (b(m−1), s(m−1))-↗-close to (L

(m−1)
n ) for every m ∈

N \ {1}. Player II wins if
⋃∞

n=1 Kn ∈ F whenever (Kn) ∈ KN
↗ is (b(m), s(m))-↗-

close to (L
(m)
n ) for all m ∈ N; otherwise Player I wins.

(3) In the mixed game, (L
(m)
n ) must be (a(m), r(m))-close to (K

(m)
n ) for every m ∈ N

and (K
(m)
n ) must be (b(m−1), s(m−1))-↗-close to (L

(m−1)
n ) for every m ∈ N \ {1}.

Player II wins if
⋃∞

n=1 Kn ∈ F whenever (Kn) ∈ KN
↗ is (b(m), s(m))-↗-close to

(L
(m)
n ) for all m ∈ N; otherwise Player I wins.

The set D defined above is dense in KN, and the set {(
⋃n

j=1 Kj) ∈ KN
↗ | (Kn) ∈ D}

is dense in KN
↗.

Proposition 2.8.
For a subfamily F of Fσ, the following conditions are equivalent:
(1) Player II has a winning strategy in the disjoint game for F ;

(1a) F is residual;

(2) Player II has a winning strategy in the monotone game for F ;

(2a) F is ↗-residual;

(3) Player II has a winning strategy in the mixed game for F .

Outline Proof.
Proposition 2.3 shows that (1) is equivalent to (1a) and that (2) is equivalent to

(2a). It is easy to see that Remark 2.6 ensures that (3) implies both (1) and (2). It
is proved in [Sa2] that (1) and (2) are equivalent, and in fact the proof there shows
that each of (1) and (2) implies (3).

The mixed game allows us to prove the following propositions, which is equivalent
to saying that if F is residual, then N(f) ∈ F for a typical f ∈ C(I):

Proposition 2.9.
Let F be a subfamily of Fσ for which Player II has a winning strategy in the mixed

game. Then Player II has a winning strategy in the (C(I), S)-Banach Mazur game,
where S = {f ∈ C(I) | N(f) ∈ F}.

Even the proof of this proposition is so complicated that we shall not go into
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further details here.
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