The Erdös-Sierpiński Duality Theorem

Shingo SAITO*

0 Notation

The Lebesgue measure on \mathbb{R} is denoted by μ . The σ -ideals that consist of all meagre subsets and null subsets of \mathbb{R} are denoted by \mathcal{M} and \mathcal{N} respectively.

1 Similarities between Meagre Sets and Null Sets

Definition 1.1 Let \mathcal{I} be an ideal on a set. A subset \mathcal{B} of \mathcal{I} is called a *base* for \mathcal{I} if each set in \mathcal{I} is contained in some set in \mathcal{B} .

Proposition 1.2 Each meagre subset of a topological space is contained in some meagre \mathcal{F}_{σ} set. In particular, $\mathcal{M} \cap \mathcal{F}_{\sigma}$ is a base for \mathcal{M} .

Proof. Let A be a meagre subset of a topological space. Then $A = \bigcup_{n=1}^{\infty} A_n$ for some nowhere dense sets A_n . The set $\bigcup_{n=1}^{\infty} \overline{A}_n$, which contains A, is meagre and \mathcal{F}_{σ} since the sets \overline{A}_n are nowhere dense and closed.

Proposition 1.3 Each null subset of \mathbb{R} is contained in some null \mathcal{G}_{δ} set. In other words, $\mathcal{N} \cap \mathcal{G}_{\delta}$ is a base for \mathcal{N} .

Proof. This is immediate from the regularity of the Lebesgue measure.

Proposition 1.4 Every uncountable \mathcal{G}_{δ} subset of \mathbb{R} contains a nowhere dense null closed set with cardinality 2^{ω} .

Proof. Let G be an uncountable \mathcal{G}_{δ} set. Then $G = \bigcap_{n=0}^{\infty} U_n$ for some open sets U_n .

We may construct a Cantor scheme $\{I_s \mid s \in 2^{<\omega}\}$ such that I_s is a compact nondegenerate interval contained in $U_{|s|}$ with $\mu(I_s) \leq 3^{-n}$ for every $s \in 2^{<\omega}$. Let $f: 2^{\omega} \longrightarrow \mathbb{R}$ denote the associated map of the Cantor scheme defined by $\{f(\alpha)\} = \bigcap_{n=1}^{\infty} I_{\alpha|n}$. Denote the range of f by A.

Note that $A = \bigcap_{n=1}^{\infty} \bigcup_{s \in 2^n} I_s$, which implies that A is closed. Moreover A is null because

$$\mu(A) \leq \mu\left(\bigcup_{s \in 2^n} I_s\right) \leq \sum_{s \in 2^n} \mu(I_s) \leq \frac{2^n}{3^n} \to 0 \quad \text{as } n \to \infty.$$

^{*}new@ms.u-tokyo.ac.jp

Thus Int $A = \emptyset$, which shows that A is nowhere dense since A is closed. The injectivity of f shows that $|A| = 2^{\omega}$. Since $I_s \subset U_{|s|}$ for every $s \in 2^{<\omega}$, we have

$$A = \bigcap_{n=1}^{\infty} \bigcup_{s \in 2^n} I_s \subset \bigcap_{n=1}^{\infty} U_n = G.$$

Corollary 1.5 Every residual subset of \mathbb{R} contains a meagre set with cardinality 2^{ω} .

Proof. Let A be a residual subset of \mathbb{R} . Then $A^c = \bigcup_{n=1}^{\infty} A_n$ for some nowhere dense sets A_n . Since $\bigcup_{n=1}^{\infty} \overline{A}_n$ is a meagre \mathcal{F}_{σ} set that contains A^c , the set $(\bigcup_{n=1}^{\infty} \overline{A}_n)^c$ is a nonmeagre \mathcal{G}_{δ} set contained in A. Therefore Proposition 1.4 shows that $(\bigcup_{n=1}^{\infty} \overline{A}_n)^c$ contains a meagre set with cardinality 2^{ω} , which is contained in A.

Corollary 1.6 The complement of each null subset of \mathbb{R} contains a null set with cardinality 2^{ω} .

Proof. Let A be a subset of \mathbb{R} with $A^c \in \mathcal{N}$. Then A is measurable and $\mu(A) = \infty$. Therefore the regularity of μ yields a closed set F contained in A with $\mu(F) = \infty$. It follows from Proposition 1.4 that F contains a null set with cardinality 2^{ω} , which is contained in A.

2 Erdös-Sierpiński Duality Theorem

Proposition 2.1 There exist a meagre \mathcal{F}_{σ} subset A and a null \mathcal{G}_{δ} subset B of \mathbb{R} that satisfy $A \cap B = \emptyset$ and $A \cup B = \mathbb{R}$.

Proof. Enumerate $\mathbb{Q} = \{q_1, q_2, \ldots\}$, and put $P_n = \bigcup_{j=1}^{\infty} B(q_j, 2^{-n-j})$ for positive integers n. Define $B = \bigcap_{n=1}^{\infty} P_n$ and $A = B^c$. Since P_n is open for every positive integer n, we have $B \in \mathcal{G}_{\delta}$ and $A \in \mathcal{F}_{\sigma}$. We shall prove that A is meagre and B is null.

The set B is null because

$$\mu(B) \leq \mu(P_n) \leq \sum_{j=1}^{\infty} \mu(B(q_j, 2^{-n-j})) = \sum_{j=1}^{\infty} 2^{-n-j+1}$$

= 2⁻ⁿ⁺¹ \rightarrow 0 as $n \to \infty$.

For every positive integer n, the set P_n^c is nowhere dense because P_n is open and dense. It follows from $A = \bigcup_{n=1}^{\infty} P_n^c$ that A is meagre.

Theorem 2.2 (Erdös-Sierpiński Duality Theorem) Assume that the continuum hypothesis holds. Then there exists an involution $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f(A) is meagre if and only if A is null, and f(A) is null if and only if A is meagre for every subset A of \mathbb{R} .

Proof. Since $|\mathcal{M} \cap \mathcal{F}_{\sigma}| = 2^{\omega}$ and $|\mathcal{N} \cap \mathcal{G}_{\delta}| = 2^{\omega}$, it follows from Proposition 2.1 that there exist bijections $\xi \longmapsto A_{\xi}$ from 2^{ω} to $\mathcal{M} \cap \mathcal{F}_{\sigma}$, and $\xi \longmapsto B_{\xi}$ from 2^{ω} to $\mathcal{N} \cap \mathcal{G}_{\delta}$ that satisfy $A_0 \cap B_0 = \emptyset$ and $A_0 \cup B_0 = \mathbb{R}$.

Define inductively a map $\xi \longmapsto F_{\xi}$ from 2^{ω} to \mathcal{M} such that

- (1) $F_0 = A_0;$
- (2) $F_{\xi+1}$ is the union of $F_{\xi} \cup A_{\xi}$ and a meagre set contained in $(F_{\xi} \cup A_{\xi})^c$ with cardinality 2^{ω} for every $\xi \in 2^{\omega}$;
- (3) $F_{\xi} = \bigcup_{\alpha \in \xi} F_{\alpha}$ for every limit ordinal $\xi \in 2^{\omega}$.

We may construct such a map due to Corollary 1.5 and the continuum hypothesis.

Similarly Corollary 1.6 and the continuum hypothesis allow us to define a map $\xi \mapsto G_{\xi}$ from 2^{ω} to \mathcal{N} such that

- (1) $G_0 = B_0;$
- (2) $G_{\xi+1}$ is the union of $G_{\xi} \cup B_{\xi}$ and a null set contained in $(G_{\xi} \cup B_{\xi})^c$ with cardinality 2^{ω} for every $\xi \in 2^{\omega}$;
- (3) $G_{\xi} = \bigcup_{\alpha \in \xi} G_{\alpha}$ for every limit ordinal $\xi \in 2^{\omega}$.

For each $\xi \in 2^{\omega}$, there exists a bijection $f_{\xi} \colon F_{\xi+1} \setminus F_{\xi} \longrightarrow G_{\xi+1} \setminus G_{\xi}$ since $|F_{\xi+1} \setminus F_{\xi}| = |G_{\xi+1} \setminus G_{\xi}| = 2^{\omega}$. Put $\tilde{f} = \bigcup_{\xi \in 2^{\omega}} f_{\xi}$. Then \tilde{f} is a bijection from $\bigcup_{\xi \in 2^{\omega}} (F_{\xi+1} \setminus F_{\xi}) = \mathbb{R} \setminus F_0 = G_0$ to $\bigcup_{\xi \in 2^{\omega}} (G_{\xi+1} \setminus G_{\xi}) = \mathbb{R} \setminus G_0 = F_0$. Thus the union f of \tilde{f} and \tilde{f}^{-1} is an involution from \mathbb{R} to \mathbb{R} .

Let M be a meagre set. Proposition 1.2 implies that M is contained in A_{ξ_0} for some $\xi_0 \in 2^{\omega}$. Then

$$M \subset A_{\xi_0} \subset F_{\xi_0+1} = \bigcup_{\xi \in \xi_0+1} (F_{\xi+1} \setminus F_{\xi}) \cup F_0$$

shows that

$$f(M) \subset f\left(\bigcup_{\xi \in \xi_0+1} (F_{\xi+1} \setminus F_{\xi}) \cup F_0\right) = \bigcup_{\xi \in \xi_0+1} f(F_{\xi+1} \setminus F_{\xi}) \cup f(F_0)$$
$$= \bigcup_{\xi \in \xi_0+1} (G_{\xi+1} \setminus G_{\xi}) \cup G_0 = G_{\xi_0+1} \in \mathcal{N},$$

which implies that f(M) is null.

Similarly it follows from Proposition 1.3 that f(N) is meagre for every null set N.

Since f is an involution, we conclude that f(M) is null only if M is meagre, and that f(N) is meagre only if N is null.

Remark. Assuming the continuum hypothesis is too much; the proof of Theorem 2.2 works on the mere assumption that $add(\mathcal{M}) = add(\mathcal{N}) = 2^{\omega}$. In particular, assuming the Martin axiom is enough.

3 References

- [1] Tomek Bartoszyński and Haim Judah, Set Theory—On the Structure of the Real Line, A K Peters.
- [2] Winfried Just and Martin Weese, *Discovering Modern Set Theory II*, Graduate Studies in Mathematics, 18, American Mathematical Society.
- [3] John C. Oxtoby, *Measure and Category*, Graduate Texts in Mathematics, 2, Springer-Verlag.
- [4] S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 180, Spring-Verlag.