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0 Notation

The Lebesgue measure on R is denoted by µ. The σ-ideals that consist of all meagre
subsets and null subsets of R are denoted by M and N respectively.

1 Similarities between Meagre Sets and Null Sets

Definition 1.1 Let I be an ideal on a set. A subset B of I is called a base for I if each
set in I is contained in some set in B.

Proposition 1.2 Each meagre subset of a topological space is contained in some meagre
Fσ set. In particular, M∩Fσ is a base for M.

Proof. Let A be a meagre subset of a topological space. Then A =
⋃∞

n=1 An for some
nowhere dense sets An. The set

⋃∞
n=1 An, which contains A, is meagre and Fσ since the

sets An are nowhere dense and closed.

Proposition 1.3 Each null subset of R is contained in some null Gδ set. In other words,
N ∩ Gδ is a base for N .

Proof. This is immediate from the regularity of the Lebesgue measure.

Proposition 1.4 Every uncountable Gδ subset of R contains a nowhere dense null closed
set with cardinality 2ω.

Proof. Let G be an uncountable Gδ set. Then G =
⋂∞

n=0 Un for some open sets Un.
We may construct a Cantor scheme { Is | s ∈ 2<ω } such that Is is a compact nonde-

generate interval contained in U|s| with µ(Is) 5 3−n for every s ∈ 2<ω. Let f : 2ω −→ R
denote the associated map of the Cantor scheme defined by

{
f(α)

}
=

⋂∞
n=1 Iα|n . Denote

the range of f by A.
Note that A =

⋂∞
n=1

⋃
s∈2n Is, which implies that A is closed. Moreover A is null

because

µ(A) 5 µ

( ⋃
s∈2n

Is

)
5

∑
s∈2n

µ(Is) 5 2n

3n
→ 0 as n →∞.
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Thus Int A = ∅, which shows that A is nowhere dense since A is closed. The injectivity
of f shows that |A| = 2ω. Since Is ⊂ U|s| for every s ∈ 2<ω, we have

A =
∞⋂

n=1

⋃
s∈2n

Is ⊂
∞⋂

n=1

Un = G.

Corollary 1.5 Every residual subset of R contains a meagre set with cardinality 2ω.

Proof. Let A be a residual subset of R. Then Ac =
⋃∞

n=1 An for some nowhere dense
sets An. Since

⋃∞
n=1 An is a meagre Fσ set that contains Ac, the set (

⋃∞
n=1 An)c is a

nonmeagre Gδ set contained in A. Therefore Proposition 1.4 shows that (
⋃∞

n=1 An)c

contains a meagre set with cardinality 2ω, which is contained in A.

Corollary 1.6 The complement of each null subset of R contains a null set with cardi-
nality 2ω.

Proof. Let A be a subset of R with Ac ∈ N . Then A is measurable and µ(A) = ∞.
Therefore the regularity of µ yields a closed set F contained in A with µ(F ) = ∞. It
follows from Proposition 1.4 that F contains a null set with cardinality 2ω, which is
contained in A.

2 Erdös-Sierpiński Duality Theorem

Proposition 2.1 There exist a meagre Fσ subset A and a null Gδ subset B of R that
satisfy A ∩B = ∅ and A ∪B = R.

Proof. Enumerate Q = {q1, q2, . . .}, and put Pn =
⋃∞

j=1 B(qj, 2
−n−j) for positive inte-

gers n. Define B =
⋂∞

n=1 Pn and A = Bc. Since Pn is open for every positive integer n,
we have B ∈ Gδ and A ∈ Fσ. We shall prove that A is meagre and B is null.

The set B is null because

µ(B) 5 µ(Pn) 5
∞∑

j=1

µ
(
B(qj, 2

−n−j)
)

=
∞∑

j=1

2−n−j+1

= 2−n+1 → 0 as n →∞.

For every positive integer n, the set P c
n is nowhere dense because Pn is open and

dense. It follows from A =
⋃∞

n=1 P c
n that A is meagre.

Theorem 2.2 (Erdös-Sierpiński Duality Theorem) Assume that the continuum hy-
pothesis holds. Then there exists an involution f : R −→ R such that f(A) is meagre if
and only if A is null, and f(A) is null if and only if A is meagre for every subset A of R.
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Proof. Since |M ∩ Fσ| = 2ω and |N ∩ Gδ| = 2ω, it follows from Proposition 2.1 that
there exist bijections ξ 7−→ Aξ from 2ω to M∩Fσ, and ξ 7−→ Bξ from 2ω to N ∩Gδ that
satisfy A0 ∩B0 = ∅ and A0 ∪B0 = R.

Define inductively a map ξ 7−→ Fξ from 2ω to M such that

(1) F0 = A0;

(2) Fξ+1 is the union of Fξ∪Aξ and a meagre set contained in (Fξ∪Aξ)
c with cardinality

2ω for every ξ ∈ 2ω;

(3) Fξ =
⋃

α∈ξ Fα for every limit ordinal ξ ∈ 2ω.

We may construct such a map due to Corollary 1.5 and the continuum hypothesis.
Similarly Corollary 1.6 and the continuum hypothesis allow us to define a map ξ 7−→

Gξ from 2ω to N such that

(1) G0 = B0;

(2) Gξ+1 is the union of Gξ ∪Bξ and a null set contained in (Gξ ∪Bξ)
c with cardinality

2ω for every ξ ∈ 2ω;

(3) Gξ =
⋃

α∈ξ Gα for every limit ordinal ξ ∈ 2ω.

For each ξ ∈ 2ω, there exists a bijection fξ : Fξ+1\Fξ −→ Gξ+1\Gξ since |Fξ+1\Fξ| =
|Gξ+1 \ Gξ| = 2ω. Put f̃ =

⋃
ξ∈2ω fξ. Then f̃ is a bijection from

⋃
ξ∈2ω(Fξ+1 \ Fξ) =

R \ F0 = G0 to
⋃

ξ∈2ω(Gξ+1 \ Gξ) = R \ G0 = F0. Thus the union f of f̃ and f̃−1 is an
involution from R to R.

Let M be a meagre set. Proposition 1.2 implies that M is contained in Aξ0 for some
ξ0 ∈ 2ω. Then

M ⊂ Aξ0 ⊂ Fξ0+1 =
⋃

ξ∈ξ0+1

(Fξ+1 \ Fξ) ∪ F0

shows that

f(M) ⊂ f

( ⋃

ξ∈ξ0+1

(Fξ+1 \ Fξ) ∪ F0

)
=

⋃

ξ∈ξ0+1

f(Fξ+1 \ Fξ) ∪ f(F0)

=
⋃

ξ∈ξ0+1

(Gξ+1 \Gξ) ∪G0 = Gξ0+1 ∈ N ,

which implies that f(M) is null.
Similarly it follows from Proposition 1.3 that f(N) is meagre for every null set N .
Since f is an involution, we conclude that f(M) is null only if M is meagre, and that

f(N) is meagre only if N is null.

Remark. Assuming the continuum hypothesis is too much; the proof of Theorem 2.2
works on the mere assumption that add(M) = add(N ) = 2ω. In particular, assuming
the Martin axiom is enough.
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