The Erdos-Sierpinski Duality Theorem

Shingo SAITO*

0 Notation

The Lebesgue measure on R is denoted by p. The o-ideals that consist of all meagre
subsets and null subsets of R are denoted by M and N respectively.

1 Similarities between Meagre Sets and Null Sets

Definition 1.1 Let Z be an ideal on a set. A subset B of 7 is called a base for Z if each
set in Z is contained in some set in B.

Proposition 1.2 FEach meagre subset of a topological space is contained in some meagre
F, set. In particular, M N F, is a base for M.

Proof. Let A be a meagre subset of a topological space. Then A = J)7 | A,, for some
nowhere dense sets A,. The set |J,~, A,,, which contains A, is meagre and F, since the
sets A,, are nowhere dense and closed. |

Proposition 1.3 FEach null subset of R is contained in some null G5 set. In other words,
N NG;s is a base for N.

Proof. This is immediate from the regularity of the Lebesgue measure. i

Proposition 1.4 Every uncountable G5 subset of R contains a nowhere dense null closed
set with cardinality 2%.

Proof. Let G be an uncountable Gs set. Then G = ﬂzozo U, for some open sets U,.
We may construct a Cantor scheme { I | s € 2<“ } such that 5 is a compact nonde-
generate interval contained in Uy with pu(Z;) < 37" for every s € 2<. Let f:2¥ — R
denote the associated map of the Cantor scheme defined by { f(«)} = (", Ia|,. Denote
the range of f by A.
Note that A = ("1 U,con Is, which implies that A is closed. Moreover A is null

because
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Thus Int A = (), which shows that A is nowhere dense since A is closed. The injectivity
of f shows that |A| = 2“. Since I, C Uy, for every s € 2<“, we have

A:ﬁ U]SCﬁUn:G.
n=1

n=1se2"

Corollary 1.5 Every residual subset of R contains a meagre set with cardinality 2“.

Proof. Let A be a residual subset of R. Then A° = J,7, A, for some nowhere dense
sets A,. Since |J°7, A, is a meagre F, set that contains A¢, the set (2", 4,)° is a
nonmeagre Gs set contained in A. Therefore Proposition 1.4 shows that (|7, A4,)°
contains a meagre set with cardinality 2, which is contained in A.

Corollary 1.6 The complement of each null subset of R contains a null set with cardi-
nality 2.

Proof. Let A be a subset of R with A° € M. Then A is measurable and p(A) = oo.
Therefore the regularity of p yields a closed set F' contained in A with u(F) = oco. Tt
follows from Proposition 1.4 that F' contains a null set with cardinality 2*, which is
contained in A. |

2 Erdos-Sierpinski Duality Theorem

Proposition 2.1 There exist a meagre F, subset A and a null G5 subset B of R that
satisfy ANB =( and AUB =R.

Proof. Enumerate Q = {q1,¢o,...}, and put P, = Uj‘;l B(gj,27"77) for positive inte-
gers n. Define B =\, P, and A = B°. Since P, is open for every positive integer n,
we have B € G5 and A € F,. We shall prove that A is meagre and B is null.

The set B is null because

p(B) S p(Pa) £ p(Blg27"7)) =) 27+
j=1 j=1
=271 0 asn — oo.
For every positive integer n, the set P¢ is nowhere dense because P, is open and
dense. It follows from A = ;- P¢ that A is meagre. |

Theorem 2.2 (Erdds-Sierpiriski Duality Theorem) Assume that the continuum hy-
pothesis holds. Then there exists an involution f: R — R such that f(A) is meagre if
and only if A is null, and f(A) is null if and only if A is meagre for every subset A of R.



Proof. Since |IM N F,| = 2% and [N NGs| = 2¥, it follows from Proposition 2.1 that
there exist bijections & — A from 2¢ to MNF,, and £ — Be from 2 to N'NGs that
satisfy A9 N By =0 and Ay U By = R.

Define inductively a map § —— F¢ from 2¢ to M such that

(1) FO = Ao,

(2) Feyq is the union of FrUA, and a meagre set contained in (FrUA)¢ with cardinality
2¢ for every & € 2%

(3) Fe = U,ee Fa for every limit ordinal § € 2.

We may construct such a map due to Corollary 1.5 and the continuum hypothesis.

Similarly Corollary 1.6 and the continuum hypothesis allow us to define a map & —
G¢ from 2 to N such that

(1) Go = By;

(2) Geyq is the union of G¢U B and a null set contained in (G¢ U B¢)© with cardinality
2¢ for every £ € 2¥;

(3) Ge¢ = U,ee Ga for every limit ordinal £ € 2.

For each ¢ € 2, there exists a bijection fe: Feyi \ Fe — Gep1\Ge since |Fepq \ Fe| =
|Gey1 \ Ge| = 2¢. Put f= Ugego fe- Then f is a bijection from Ugezw(Fgﬂ \ Fg)
R\ Fy = Go t0 Ugeaw (Ger1 \ Ge) = R\ Go = Fy. Thus the union f of f and flisan
involution from R to R.

Let M be a meagre set. Proposition 1.2 implies that M is contained in Ag, for some
& € 2¥. Then
M C Ag, CFgni= |J (B \F)UF,
§€bo+1
shows that

f(M)Cf( U (Fs+1\Fs)UFo> = U fFEa\F)u fm)

£ebo+1 £ebo+1
= J (Gen \Ge) UGy =G €N,
£e€bo+1

which implies that f(M) is null.
Similarly it follows from Proposition 1.3 that f(/N) is meagre for every null set N.
Since f is an involution, we conclude that f(M) is null only if M is meagre, and that
f(N) is meagre only if N is null. i

Remark. Assuming the continuum hypothesis is too much; the proof of Theorem 2.2
works on the mere assumption that add(M) = add(N) = 2*. In particular, assuming
the Martin axiom is enough.
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