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Let I = [0, 1] and look at the Banach space C(I) = {f : I −→ R | f is continuous}.

Definition 1.
We say that a typical (generic) f ∈ C(I) has property P if the set {f ∈ C(I) |

f has property P} is residual.

Recall that a subset A of a topological space is said to be nowhere dense if the
closure of A has empty interior; A is meagre (first category) if A can be expressed as
a countable union of nowhere dense sets; A is residual (comeagre) if its complement
Ac is meagre.

The investigation of the behaviour of typical functions f ∈ C(I) started when Ba-
nach [Ba] and Mazurkiewicz [Ma] independently proved in 1931 that a typical f ∈ C(I)
is nowhere differentiable. The theorem means that we need to consider Dini derivatives
rather than ordinary derivatives for typical functions.

Definition 2.
The Dini derivatives of f ∈ C(I) at x ∈ I are the extended real numbers defined

by

D+f(x) = lim sup
h↓0

f(x + h) − f(x)

h
, D−f(x) = lim sup

h↑0

f(x + h) − f(x)

h
,

D+f(x) = lim inf
h↓0

f(x + h) − f(x)

h
, D−f(x) = lim inf

h↑0

f(x + h) − f(x)

h
.

At endpoints of I, we may define only two of the Dini derivatives: D+f(0) and D+f(0)
at 0, and D−f(1) and D−f(1) at 1.

Jarńık [Ja] proved the following theorem concerning Dini derivatives of typical func-
tions:

Theorem 3 (Jarńık).
A typical f ∈ C(I) has the property that

D+f(x) = D−f(x) = ∞, D+f(x) = D−f(x) = −∞

at almost all x ∈ I.

The function f may be considered to be the least differentiable at such a point x.
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Definition 4.
Let f ∈ C(I). A point x ∈ I is called a knot point of f if

D+f(x) = D−f(x) = ∞, D+f(x) = D−f(x) = −∞.

We write N(f) for the set of all points in I that are not knot points of f .

An endpoint of I is called a knot point if the two Dini derivatives defined there are
∞ and −∞. For example, 0 ∈ I is a knot point of f ∈ C(I) if D+f(0) = ∞ and
D+f(0) = −∞.

Jarńık’s theorem is equivalent to saying that N(f) is null for a typical f ∈ C(I). A
natural question generalising the theorem is in what sense N(f) is small for a typical
f ∈ C(I). The question has been completely answered by Preiss and Zaj́ıček [PZ]. To
state their theorem, we write K for the family of all closed (or equivalently compact)
subsets of I, and equip K with the Hausdorff metric. It is known that the Hausdorff
metric makes K a compact metric space (see [Ke, Theorem 4.26]).

Theorem 5 (Preiss & Zaj́ıček, unpublished).
For a σ-ideal I on I, the following are equivalent:
(1) a typical f ∈ C(I) has the property that N(f) ∈ I;

(2) a typical K ∈ K belongs to I (i.e. I ∩ K is a residual subset of K).

Recall that a σ-ideal on I is a nonempty family I of subsets of I with the following
properties:

• if A ∈ I and B ⊂ A, then B ∈ I;

• if An ∈ I for n ∈ N, then
⋃∞

n=1 An ∈ I.
A σ-ideal on I can be regarded as a family of small subsets of I.

Now we shall extend Theorem 5 to general families of subsets of I rather than σ-
ideals. That is to say, given an arbitrary family S of subsets of I, we seek a method for
deciding whether N(f) ∈ S for a typical f ∈ C(I). Observing that N(f) is always an
Fσ set (countable union of closed sets), we only need to look at families of Fσ subsets of
I. The following is the main theorem of this article:

Theorem 6 (Preiss & S.).
For a family F of Fσ subsets of I, the following are equivalent:
(1) a typical f ∈ C(I) has the property that N(f) ∈ F ;

(2) a typical (Kn) ∈ KN has the property that
⋃∞

n=1 Kn ∈ F .

Here KN is the countable product of K, equipped with the product topology.

Below we shall give an outline proof of Theorem 6. A complete proof will appear
in a joint paper [PS], which is still in preparation, but is available in the author’s PhD
thesis [Sa].

Theorem 6 reduces to constructing such X as in the following lemma:

Lemma 7.
There exists X ⊂ KN × C(I) with the following properties:
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(A) if
(
(Kn), f

)
∈ X , then

⋃∞
n=1 Kn = N(f);

(B) if A ⊂ KN is residual, then a typical f ∈ C(I) has the property that
(
(Kn), f

)
∈

X for some (Kn) ∈ A;

(C) X is analytic;

(D) for every f ∈ C(I), the set
{
(Kn) ∈ KN

∣∣ (
(Kn), f

)
∈ X

}
is closed under finite

permutations.

Recall that a Polish space is a completely metrisable separable topological space; a
subset A of a Polish space X is said to be analytic if there exist a Polish space Y and a
Borel subset B of X × Y such that the first projection of B is A. We say that a subset
A of KN is closed under finite permutations if (Kσ(n)) ∈ A whenever (Kn) ∈ A and
σ is a permutation on N for which {n ∈ N | σ(n) ̸= n} is a finite set.

The proof of Lemma 7 relies on constructing X concretely and showing that it
does indeed have properties (A)–(D). In verifying property (B), we construct a winning
strategy for a Banach-Mazur game on C(I) (see [Ke, Section 8.H] for the Banach-Mazur
game).

In what follows we prove Theorem 6 assuming Lemma 7. The implication (2) =⇒ (1)
is easy:

Proof of (2) =⇒ (1) in Theorem 6.
Set A = {(Kn) ∈ KN |

⋃∞
n=1 Kn ∈ F}. Since A is residual by assumption, Lemma 7

(B) shows that a typical f ∈ C(I) has the property that
(
(Kn), f

)
∈ X for some

(Kn) ∈ A. For such f , the definition of A and Lemma 7 (B) give N(f) =
⋃∞

n=1 Kn ∈ F ,
verifying (1).

For the proof of the converse, we invoke two results in descriptive set theory:

Lemma 8 ([Ke, Theorem 21.6]).
Every analytic subset of a Polish space has the Baire property ; namely it can be

expressed as the symmetric difference of an open set and a meagre set.

Lemma 9 (Topological zero-one law).
If A ⊂ KN is closed under finite permutations and has the Baire property, then it is

either meagre or residual.

Proof of (1) =⇒ (2) in Theorem 6.
Since {f ∈ C(I) | N(f) ∈ F} is residual by assumption, it contains a dense Gδ set

(countable intersection of open sets) G. Setting

A =
{
(Kn) ∈ KN ∣∣ (

(Kn), f
)
∈ X for some f ∈ G

}
,

the definition of G and Lemma 7 (A) show that if (Kn) ∈ A, then
⋃∞

n=1 Kn ∈ F ; so it
suffices to show that A is residual.

Since A =
⋃

f∈G

{
(Kn) ∈ KN

∣∣ (
(Kn), f

)
∈ X

}
, it is closed under finite permutations

by Lemma 7 (D). Moreover, since A is the first projection of X ∩(KN×G), it is analytic
by Lemma 7 (C) and so has the Baire property by Lemma 8. It follows from Lemma 9
that A is either meagre or residual.
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We look for a contradiction assuming that A is meagre. Then since Ac is residual,
Lemma 7 (B) shows that a typical f ∈ C(I) has the property that

(
(Kn), f

)
∈ X for

some (Kn) ∈ Ac. This, together with the residuality of G, implies that
(
(Kn), f

)
∈ X

for some f ∈ G and (Kn) ∈ Ac, which contradicts the definition of A.
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