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Abstract

Let C(I) denote the Banach space of all real-valued continuous functions on the

unit interval I = [0, 1]. We say that a typical function f ∈ C(I) has a property P

if the set of all f ∈ C(I) for which the property P holds is residual in C(I).

We call x ∈ I a knot point of f ∈ C(I) if the Dini derivatives of f at x are

appropriately positive infinite or negative infinite, and write N(f) for the set of

all non-knot points of f ∈ C(I). The main theorem of the thesis characterises

families S of subsets of I for which a typical function f ∈ C(I) has the property

that N(f) ∈ S.

In order to state the main theorem, we need to define residuality of families

of Fσ sets. Let K denote the set of all closed subsets of I, and equip it with

the Hausdorff metric. Every Fσ set F can, by definition, be written as F =⋃∞
n=1 Kn by using an element (Kn) of the space KN of sequences of members

of K. Moreover, it is also possible to express F as F =
⋃∞

n=1 Kn by using an

element (Kn) of the space KN
↗ of increasing sequences of members of K. These

observations lead us to the following two ways of defining the residuality of a

family F of Fσ sets:

(1) the family F is residual if the set of all (Kn) ∈ KN with
⋃∞

n=1 Kn ∈ F is

residual in KN;

(2) the family F is residual if the set of all (Kn) ∈ KN
↗ with

⋃∞
n=1 Kn ∈ F is

residual in KN
↗.

It turns out that these definitions are equivalent, and so we do not have to worry

which definition to use.
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Abstract

Having defined the residuality, we can state the main theorem: for a family

S of subsets of I, a typical function f ∈ C(I) has the property that N(f) ∈ S

if and only if the family of all Fσ subsets of I belonging to S is residual.

We use the Banach-Mazur game to prove both the main theorem and the

equivalency of residuality. The usefulness of the game lies in the fact that

residuality is equivalent to the existence of a winning strategy in the game.
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Notation

Notation in set theory

• N = {1, 2, 3, . . . }: the set of all positive integers, excluding 0.

• Z: the set of all integers.

• Z+ = {0, 1, 2, 3, . . . }: the set of all nonnegative integers, including 0.

• Q: the set of all rational numbers.

• R: the set of all real numbers.

• A ⊂ B, B ⊃ A: A is a subset of B, not necessarily proper.

• Ac: the complement of A.

• A △ B = (A \ B) ∪ (B \ A): the symmetric difference of A and B.

• A ⨿ B: the union of A and B, used only when A and B are disjoint.

•
∐

λ∈Λ Aλ: the union of Aλ for λ ∈ Λ, used only when the sets Aλ are

pairwise disjoint.

• [n] = {1, . . . , n}: the set of all positive integers at most n, used only

when n ∈ N.

Notation in topological spaces

Let X be a topological space and A a subset of X.

• Int A: the interior of A.

• A: the closure of A.
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Notation

Notation in metric spaces

Let (X, d) be a metric space, and let a ∈ X, A ⊂ X, and r > 0.

• B(a, r) = {x ∈ X | d(x, a) < r}: the open ball around a of radius r.

• B(a, r) = {x ∈ X | d(x, a) ≤ r}: the closed ball around a of radius r.

• B(A, r) =
⋃

x∈A B(x, r).

• B(A, r) =
⋃

x∈A B(x, r).

Further basic notation

• I = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}: the unit interval.

• C(I): the Banach space consisting of all continuous functions from I to

R, with the supremum norm ∥·∥ (see Definition 1.1.1).

• D±f(x), D±f(x): the Dini derivatives of f ∈ C(I) at x ∈ I (see Defini-

tion 1.1.3).

• N(f): the set of all points in I that are not knot points of f ∈ C(I) (see

Definition 1.1.5).

Conventions

Fonts

We shall normally use different fonts in accordance with the following rules:

• Lower case letters (a, b, . . . ): used to denote real numbers, functions,

and points of spaces.

• Upper case letters (A, B, . . . ): used to denote sets.

• Boldface letters (A, a, . . . ): used to denote sequences. A term of a

sequence is denoted by the corresponding normal letter accompanied

with a subscript. For example, the nth term of a sequence x is xn.
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Notation

• Calligraphic letters (A, B, . . . ): used to denote families of subsets of a

set.

• Calligraphic letters (A , B, . . . ): used to denote more complicated ob-

jects, such as families of subsets of a more complicated set.

Superscripts

Because the complexity of the proofs given in this thesis forces us to use many

indices, we shall often use superscripts as well as subscripts to denote indices

rather than exponents. Although we could use brackets as in a
(m)
n to guarantee

that m is not an exponent but an index, it would sharply decrease readability

with only a slight increase in clarity. We do use powers occasionally, but the

meaning will always be clear from the context.

Notation defined in Chapter 3

• K = {K ⊂ I | K is closed}.

• d: the Hausdorff metric (see Definition 3.1.1).

• KN = {K = (Kn) | Kn ∈ K for all n ∈ N}.

• U(K,m, r) = {L ∈ KN | d(Kn, Ln) ≤ r for all n ∈ [m]} for K ∈ KN,

m ∈ N, and r > 0.

• KN
↗ = {K ∈ KN | K1 ⊂ K2 ⊂ · · · }.

• U↗(K,m, r) = {L ∈ KN
↗ | d(Kn, Ln) ≤ r for all n ∈ [m]} for K ∈ KN

↗,

m ∈ N, and r > 0.

• Fσ: the family of all Fσ subsets of I.

• KN
F = {K ∈ KN |

⋃∞
n=1 Kn ∈ F} for F ⊂ Fσ.
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Notation

Notation used in Chapter 3 only

Definition 3.5.1

• B =

U(K,m, r) ⊂ KN

∣∣∣∣∣∣∣
K ∈ KN, m ∈ N, r ∈ (0, 1);

K1, . . . , Km are pairwise disjoint finite sets;

if x, y ∈
⋃m

n=1 Kn and x ̸= y then |x−y| ≥ 3r

.

• B↗ =

U↗(K, m, r) ⊂ KN
↗

∣∣∣∣∣∣∣
K ∈ KN

↗, m ∈ N, r ∈ (0, 1);

Km is finite;

if x, y ∈ Km and x ̸= y then |x−y| ≥ 3r

.

Notation used in Chapter 4 only

Definition 4.3.1

Let f ∈ C(I) and a > 0.

• N+(f, a)

= {x ∈ [0, 1 − 2−a] | f(y) − f(x) ≤ a(y − x) for all y ∈ [x, x + 2−a]}.

• N+(f, a)

= {x ∈ [0, 1 − 2−a] | f(y) − f(x) ≥ −a(y − x) for all y ∈ [x, x + 2−a]}.

• N−(f, a)

= {x ∈ [2−a, 1] | f(y) − f(x) ≥ a(y − x) for all y ∈ [x − 2−a, x]}.

• N−(f, a)

= {x ∈ [2−a, 1] | f(y) − f(x) ≤ −a(y − x) for all y ∈ [x − 2−a, x]}.

• N̂(f, a) = N+(f, a) ∪ N−(f, a).

• Ň(f, a) = N+(f, a) ∪ N−(f, a).

• N(f, a) = N̂(f, a)∪ Ň(f, a) = N+(f, a)∪N+(f, a)∪N−(f, a)∪N−(f, a).

For Ñ(f, a), see Convention 4.3.2.
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Notation

Definition 4.3.14

• For disjoint finite subsets Ĥ and Ȟ of I and positive numbers h and w, a

bump function of height h and width w located at Ĥ and Ȟ is a function

φ ∈ C1(I) with the following properties:

• ∥φ∥ = h;

• φ(x) = h for all x ∈ Ĥ and φ(x) = −h for all x ∈ Ȟ;

• {x ∈ I | φ(x) > 0} ⊂ B(Ĥ, w) and {x ∈ I | φ(x) < 0} ⊂ B(Ȟ, w).

Definition 4.3.18

• If f ∈ C1(I), 0 < a < b, and h > 0, the positive number µ(f, a, b, h) is

chosen to have the following property:

Suppose that φ is a bump function of height h and width

w > 0 located at Ĥ and Ȟ, where Ĥ and Ȟ are disjoint finite

subsets of I satisfying B(H̃, µ) = I. Then, setting g = f + φ,

we have Ñ(g, a) ⊂ Ñ(f, b) ∩ B(H̃, w).

Here B(H̃, µ) = I means B(Ĥ, µ) = I and B(Ȟ, µ) = I, and Ñ(g, a) ⊂ Ñ(f, b)∩

B(H̃, w) means N̂(g, a) ⊂ N̂(f, b) ∩ B(Ĥ, w) and Ň(g, a) ⊂ Ň(f, b) ∩ B(Ȟ, w).

Definition 4.4.5

• X = {a ∈ (0,∞)N | a1 < a2 < · · · → ∞}.

• Y = {δ ∈ (0, 1)N | δ1 > δ2 > · · · → 0}.

• Z = {n ∈ NN | nj+1 ≥ nj + j for all j ∈ N}.

• Am
j (n) = [nj]∪

⋃m−1
i=j {ni + 1, . . . , ni + j − 1}, where n ∈ Z and j,m ∈ N

with j ≤ m.

• nk
j = nj+k for n ∈ Z and k ∈ Z+, so that nk ∈ Z.
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Notation

• For n ∈ Z, δ ∈ Y , and k ∈ Z+,

Sk(n, δ) =

K ∈ KN

∣∣∣∣∣∣
⋃

n∈Am
j (nk)\Am−1

j (nk)

Kn ⊂
⋃

n∈Am−1
j−1 (nk)

B(Kn, δm)

whenever 2 ≤ j ≤ m − 1

.

• S (n, δ) =
⋃∞

k=0 Sk(n, δ) ⊂ KN, where n ∈ Z and δ ∈ Y .

Definition 4.4.11

• For k ∈ Z+,

Yk =
{

(K, f, n, δ,a, b) ∈ KN × C(I) × Z × Y × X × X
∣∣∣

K ∈ Sk(n, δ),

N(f, aj) ⊂
⋃

n∈Am
j (nk) B(Kn, δm) whenever j ≤ m,⋃

n∈Am
j (n) Kn ⊂ B

(
N(f, bj), δm

)
whenever j ≤ m

}
• Y =

⋃∞
k=0 Yk ⊂ KN × C(I) × Z × Y × X × X.

• X = pr Y ⊂ KN × C(I), where pr : KN × C(I) × Z × Y × X × X −→

KN × C(I) is the projection.
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Chapter 1

Introduction

1.1 History and background

In the study of real analysis, we often encounter an example contrary to an

intuition that one may bear at first thought. More interestingly, such an example

sometimes becomes a central object of study rather than just an unpleasant

counterexample best to be ignored.

We can say that the history of nowhere differentiable continuous functions

is one of such phenomena. Until the early nineteenth century, it was widely

believed that every continuous function was differentiable at ‘almost all’ points.

However, from around the middle of the century, several people began to dis-

cover examples of nowhere differentiable continuous functions. Furthermore,

Banach [Ba] and Mazurkiewicz [Ma] independently proved in 1931 that ‘most’

continuous functions are nowhere differentiable. Since then, many mathemati-

cians have been investigating properties of ‘most’ functions.

In the study of ‘most’ functions, we first have to make clear what ‘most’

means. Although a number of definitions have been invented, we shall use the

most classical notion, upon which the above-mentioned papers by Banach and

Mazurkiewicz are based.

Definition 1.1.1. We write I for the unit interval [0, 1] = {x ∈ R | 0 ≤ x ≤ 1},

13



Chapter 1 1.1 History and background

and C(I) for the set of all continuous functions from I to R. It is well known

that C(I) is a Banach space under the supremum norm ∥·∥ defined by

∥f∥ = sup
x∈I

|f(x)|

for f ∈ C(I).

In a topological space, Baire category provides us with an idea of ‘small’ sets.

Small sets in the sense of Baire category are said to be meagre, and sets whose

complements are meagre are said to be residual. Properties of ‘most’ functions

will be understood as those possessed by all functions in a residual subset of

C(I):

Definition 1.1.2. We say that a typical (or generic) function f ∈ C(I) has a

property P if the set of all f ∈ C(I) with the property P is residual in C(I).

As mentioned earlier, a typical function is nowhere differentiable, so its

derivative cannot be considered. In place of its derivative, we shall look at

its Dini derivatives :

Definition 1.1.3. Let f ∈ C(I). We define

D+f(x) = lim sup
y↓x

f(y) − f(x)

y − x
, D+f(x) = lim inf

y↓x

f(y) − f(x)

y − x

for x ∈ [0, 1), and

D−f(x) = lim sup
y↑x

f(y) − f(x)

y − x
, D−f(x) = lim inf

y↑x

f(y) − f(x)

y − x

for x ∈ (0, 1]. They are called the Dini derivatives of f at x.

The oldest result about the behaviour of the Dini derivatives of a typical

continuous is the following theorem by Jarńık [Ja]:

Theorem 1.1.4 ([Ja]). A typical function f ∈ C(I) has the property that

D+f(x) = D−f(x) = ∞, D+f(x) = D−f(x) = −∞

for almost every x ∈ (0, 1).
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Chapter 1 1.2 Structure of this thesis

This theorem leads us to the following definition:

Definition 1.1.5. We say that a point x ∈ I is a knot point of f ∈ C(I) if

• x ∈ (0, 1), D+f(x) = D−f(x) = ∞, and D+f(x) = D−f(x) = −∞; or

• x = 0, D+f(x) = ∞, and D+f(x) = −∞; or

• x = 1, D−f(x) = ∞, and D−f(x) = −∞.

For f ∈ C(I), we write N(f) for the set of all points in I that are not knot

points of f .

Theorem 1.1.4 means that a typical function f ∈ C(I) has the property that

N(f) is Lebesgue null, i.e. small from the measure-theoretic viewpoint. It is

natural to ask in what sense of smallness it is true that a typical function has

the property that N(f) is small. Preiss and Zaj́ıček answered this question in

unpublished work [PZ] by giving a necessary and sufficient condition for a σ-ideal

I (a family of ‘small’ sets; see Remark 2.1.3 for its definition) to satisfy that a

typical function f ∈ C(I) has the property that N(f) ∈ I (see Theorem 4.1.1 for

the precise statement). The purpose of this thesis is to generalise this theorem

by giving a necessary and sufficient condition for an arbitrary family S of subsets

of I to satisfy that a typical function f ∈ C(I) has the property that N(f) ∈ S

(see Theorem 4.1.2 for the precise statement). The theorem has been established

by Preiss and the author, and will be written in [PS].

1.2 Structure of this thesis

We first review in Chapter 2 some standard definitions and facts that will be

used in subsequent chapters. A more detailed exposition and complete proofs

can be found in [Ke].

Chapter 3 discusses residuality of families of Fσ sets and proves that two

natural definitions of residuality are the same. The residuality will be used to

state the main theorem of this thesis.

15



Chapter 1 1.2 Structure of this thesis

In Chapter 4 we state and prove our main theorem. Because of the high

complexity with which the proof is written, the author decided to devote the

last section of Chapter 4 to the outline of the proof that he believes helps the

reader to understand where the technical difficulties lie, though it is logically

not part of the proof.
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Chapter 2

Preliminaries

2.1 Baire category

Definition 2.1.1. Let X be a topological space and A a subset of X.

(1) We say that A is nowhere dense if Int A = ∅.

(2) We say that A is meagre if A can be expressed as a countable union of

nowhere dense subsets of X.

(3) We say that A is residual (or comeagre) if Ac is meagre.

Remark 2.1.2. Some people refer to meagre sets and nonmeagre sets as sets

of first category and of second category respectively, which is why we call this

concept Baire category. However, since the term category is used to mean a

completely different notion in many areas of mathematics, we shall stick to the

terms in Definition 2.1.1.

Remark 2.1.3. It is easy to see that the family I of all meagre subsets of a

topological space X is a σ-ideal, i.e. I has the following properties:

(1) ∅ ∈ I;

(2) if A ∈ I and B ⊂ A, then B ∈ I;

(3) if An ∈ I for all n ∈ N, then
⋃∞

n=1 An ∈ I.

17



Chapter 2 2.1 Baire category

Baire category gives a formulation of ‘small’ sets in topological spaces, but

does not work very well for all topological spaces; for example, the whole space is

meagre in Q. Spaces in which the concept is meaningful are called Baire spaces :

Definition 2.1.4. A Baire space is a topological space in which no nonempty

open set is meagre.

Remark 2.1.5. (1) Saying that no nonempty open set is meagre is equivalent

to saying that every residual set is dense.

(2) A set A is residual if and only if there exist open dense sets Un with⋂∞
n=1 Un ⊂ A. In a Baire space, it is also equivalent to the condition that

A contains a dense Gδ set.

(3) In a nonempty Baire space, no set is both meagre and residual because

the whole space is not meagre.

Complete metric spaces are important examples of Baire spaces:

Theorem 2.1.6 (Baire Category Theorem). Every complete metric space

is a Baire space.

Proof. Let (X, d) be a complete metric space, and suppose that a nonempty

open subset U of X is meagre. Then we may find nowhere dense subsets An of

X with U =
⋃∞

n=1 An.

We inductively define a sequence (xn) of points in X and a sequence (rn) of

positive numbers. Since A1 is nowhere dense, we find that U \A1 is a nonempty

open set, and so there exist x1 ∈ X and r1 > 0 such that B(x1, 2r1) ⊂ U \ A1.

Suppose that xn and rn have been defined. Since An+1 is nowhere dense, we find

that B(xn, rn) \ An+1 is a nonempty open set, and so there exist xn+1 ∈ X and

rn+1 > 0 such that B(xn+1, 2rn+1) ⊂ B(xn, rn) \ An+1 and rn+1 < rn/2.

Note that d(xn, xn+1) < rn for every n ∈ N. Therefore, if m < n, then

d(xm, xn) ≤
n−1∑
k=m

d(xk, xk+1) <

n−1∑
k=m

rk ≤
n−1∑
k=m

2−(k−m)rm < 2rm.

18



Chapter 2 2.2 Banach-Mazur game

It follows that (xn) is a Cauchy sequence, and so it is convergent, say to x.

The inequality shown above implies that d(xm, x) ≤ 2rm for all m ∈ N. Hence

the point x belongs to U but does not belong to any An, which contradicts the

choice of An.

2.2 Banach-Mazur game

Definition 2.2.1 (Banach-Mazur game). Let X be a topological space, S

a subset of X, and A a family of subsets of X. Suppose that every set in A

has nonempty interior and that every nonempty open subset of X contains a set

in A. The (X,S,A)-Banach-Mazur game is described as follows. Two players,

called Player I and Player II, alternately choose a set in A with the restriction

that each player must choose a subset of the set chosen by the other player in

the previous turn. Player II will win if the intersection of all the sets chosen by

the players is contained in S; otherwise Player I will win.

Remark 2.2.2. Let An and Bn be the sets chosen in the nth round by Players I

and II respectively. The rule demands that

A1 ⊃ B1 ⊃ A2 ⊃ B2 ⊃ · · · ,

which implies that the intersection we look at is the same as both
⋂∞

n=1 An and⋂∞
n=1 Bn.

Example 2.2.3. The two conditions imposed on A in Definition 2.2.1 might

seem slightly intricate. We should first note that they are fulfilled if A is the

family of all nonempty open subsets of X. In fact, we may assume that A is this

family when we consider which player has a winning strategy (Theorem 2.2.4).

However, when we play the game in concrete spaces, it is often technically

convenient to take other families as A, which is why we allowed other families

in Definition 2.2.1. We give some examples of families satisfying the conditions:

• A is an open base for X such that ∅ /∈ A;
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Chapter 2 2.2 Banach-Mazur game

• X is a metric space and A is the family of all open balls;

• X is a metric space and A is the family of all closed balls;

• X is a metric space, D is a dense subset of X, and A is the family of all

open balls whose centres belong to D.

There is an easy criterion for deciding whether Player II has a winning strat-

egy in the Banach-Mazur game:

Theorem 2.2.4 ([Ox, Theorem 1]). The (X,S,A)-Banach-Mazur game ad-

mits a winning strategy for Player II if and only if S is residual in X.

Proof. Firstly, assuming that S is residual in X, we shall give a winning strategy

for Player II. We may take open dense subsets Un of X with
⋂∞

n=1 Un ⊂ S. Let

An ∈ A be the set chosen by Player I in the nth round. Since Int An is a

nonempty open set, its intersection with Un is also a nonempty open set. It

follows that there exists Bn ∈ A with Bn ⊂ Int An ∩ Un. Player II will choose

Bn as her nth move. Note that this move is legal because Bn ⊂ Int An ⊂ An. If

Player II adopts this strategy, then

∞⋂
n=1

Bn ⊂
∞⋂

n=1

Un ⊂ S,

which implies that Player II wins.

Conversely, suppose that Player II has a winning strategy. For each n ∈ N,

let Xn denote the set of all (A1, B1, . . . , An, Bn) ∈ A2n such that, for every

j ∈ [n], the strategy tells Player II to reply Bj when the first j moves of Player I

are A1, . . . , Aj.

We shall inductively construct Yn and Zn with Yn ⊂ Zn ⊂ Xn using Zorn’s

lemma. Firstly, we set Z1 = X1 and take a maximal subset Y1 of Z1 such that

if (A1, B1) and (A′
1, B

′
1) are distinct elements of Y1, then Int B1 ∩ Int B′

1 = ∅.

When Yn has been defined, we set

Zn+1 = {(A1, B1, . . . , An+1, Bn+1) ∈ Xn+1 | (A1, B1, . . . , An, Bn) ∈ Yn}
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Chapter 2 2.2 Banach-Mazur game

and take a maximal subset Yn+1 of Zn+1 such that if (A1, B1, . . . , An+1, Bn+1)

and (A′
1, B

′
1, . . . , A

′
n+1, B

′
n+1) are distinct elements of Yn+1, then Int Bn+1 ∩

Int B′
n+1 = ∅. Note that for every (A1, B1, . . . , An, Bn) ∈ Zn there exists

(A′
1, B

′
1, . . . , A

′
n, B′

n) ∈ Yn with Int Bn ∩ Int B′
n ̸= ∅, because if such an element

does not exist, then the maximality of Yn implies that (A1, B1, . . . , An, Bn) be-

longs to Yn, in which case, setting (A′
1, B

′
1, . . . , A

′
n, B

′
n) = (A1, B1, . . . , An, Bn),

we have Int Bn ∩ Int B′
n = Int Bn ̸= ∅, a contradiction.

Set

Un =
∐

(A1,B1,...,An,Bn)∈Yn

Int Bn.

for each n ∈ N. Obviously Un is open for every n ∈ N. We shall inductively

show that Un is dense for every n ∈ N. Let U be an arbitrary nonempty open

subset of X. We need to prove that U ∩ Un ̸= ∅ for every n ∈ N. We may take

A1 ∈ A contained in U and B1 ∈ A with (A1, B1) ∈ X1 = Z1. Then there

exists (A′
1, B

′
1) ∈ Y1 with Int B1 ∩ Int B′

1 ̸= ∅, which implies that

U ∩ U1 ⊃ B1 ∩ Int B′
1 ̸= ∅.

Assume that we have proved that U ∩ Un ̸= ∅. It means that there exists

(A1, B1, . . . , An, Bn) ∈ Yn such that U ∩ Int Bn ̸= ∅. We may take An+1 ∈ A

contained in U ∩ Int Bn and Bn+1 ∈ A with (A1, B1, . . . , An+1, Bn+1) ∈ Xn+1.

Since (A1, B1, . . . , An+1, Bn+1) ∈ Zn+1, there exists (A′
1, B

′
1, . . . , A

′
n+1, B

′
n+1) ∈

Yn+1 with Int Bn+1 ∩ Int B′
n+1 ̸= ∅, which implies that

U ∩ Un+1 ⊃ Bn+1 ∩ Int B′
n+1 ̸= ∅.

Having shown that Un is open dense for every n ∈ N, we only need to prove

that
⋂∞

n=1 Un ⊂ S. Let x ∈
⋂∞

n=1 Un. For each n ∈ N, there exists a unique

(An
1 , B

n
1 , . . . , An

n, Bn
n) ∈ Yn such that x ∈ Int Bn

n . For every n ∈ N, since

x ∈ Int Bn+1
n+1 ⊂ Int Bn+1

n

and (An+1
1 , Bn+1

1 , . . . , An+1
n , Bn+1

n ) ∈ Yn, the uniqueness shows that

(An
1 , B

n
1 , . . . , An

n, B
n
n) = (An+1

1 , Bn+1
1 , . . . , An+1

n , Bn+1
n ).
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Chapter 2 2.3 Analytic sets and Baire property

It follows that neither An
j nor Bn

j depends on n, so we have found a sequence

(A1, B1, A2, B2, . . . ) ∈ AN such that (A1, B1, . . . , An, Bn) ∈ Yn and x ∈ Int Bn

for all n ∈ N. Because (A1, B1, . . . , An, Bn) ∈ Xn for all n ∈ N and Player II is

adopting a winning strategy, we find that
⋂∞

n=1 Bn ⊂ S, which implies that

x ∈
∞⋂

n=1

Int Bn ⊂
∞⋂

n=1

Bn ⊂ S.

Remark 2.2.5. Later in this thesis, we shall show residuality by constructing a

winning strategy of a Banach-Mazur game. As the proof shows, it is much more

difficult to prove that the existence of a winning strategy implies the residuality

than its converse. It means that constructing a winning strategy is easier than

verifying residuality directly.

2.3 Analytic sets and Baire property

Definition 2.3.1. A Polish space is a topological space that is second countable

and completely metrisable.

Example 2.3.2. Among the easiest examples of Polish spaces are R, I, and N.

The open intervals (0, 1) and (0,∞), where the Euclidean metric is not complete,

are also Polish because they are homeomorphic to R. To observe that C(I) is

Polish, we need to note that the polynomial functions with rational coefficients

form a dense subset of C(I).

Every compact metric space is second countable and therefore is Polish.

Proposition 2.3.3 ([Ke, Proposition 3.3 and Theorem 3.11]). (1) The

product of countably many Polish spaces is always Polish.

(2) Every Gδ subset of a Polish space is Polish.

Definition 2.3.4. Let X be a Polish space. A subset A of X is said to be

analytic if there exist a Polish space Y and a Borel subset B of X ×Y such that

A = pr B, where pr denotes the projection from X × Y to X.
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Chapter 2 2.3 Analytic sets and Baire property

Proposition 2.3.5. (1) Every Borel subset of a Polish space is analytic.

(2) The family of all analytic subsets of a Polish space is closed under taking

countable unions and countable intersections.

(3) If X and Y are Polish spaces and f : X −→ Y is continuous, then f(A) is

analytic for every analytic subset A of X.

Proof. If X is a Polish space and B is a Borel subset of X, then B × X is a

Borel subset of X × X whose projection to the first coordinate is B, so B is

analytic. This proves (1); see Proposition 14.4 of [Ke] for (2) and (3) (we also

need Exercise 14.3 because the definition of analytic sets is slightly different in

[Ke]).

Definition 2.3.6. Let X be a topological space. A subset A of X is said to

have the Baire property if there exist an open subset U of X and a meagre subset

M of X such that A = U △ M .

Proposition 2.3.7 ([Ke, Proposition 8.22]). Let X be a topological space.

Then the family of all subsets of X with the Baire property is a σ-algebra on

X.

Theorem 2.3.8 ([Ke, Theorem 21.6]). Let X be a Polish space. Then every

analytic subset of X has the Baire property.
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Baire category in families of sets

of the first class

3.1 Hausdorff metric

3.1.1 The space K

Definition 3.1.1. We write K for the set of all closed (or equivalently compact)

subsets of I. The Hausdorff metric d on K is defined by

d(K,L) = inf{r > 0 | B(K, r) ⊃ L, B(L, r) ⊃ K}

if neither K nor L is empty and by

d(K,L) =

1 if exactly one of K and L is empty;

0 if both K and L are empty.

Remark 3.1.2. For K,L ∈ K and r ∈ (0, 1),

• d(K,L) < r if and only if K ⊂ B(L, r) and L ⊂ B(K, r);

• d(K,L) ≤ r if and only if K ⊂ B(L, r) and L ⊂ B(K, r)

even when either K or L is empty.
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Chapter 3 3.1 Hausdorff metric

Proposition 3.1.3. The space K equipped with the Hausdorff metric is com-

pact and therefore is Polish.

Proof. See Theorem 4.26 of [Ke].

Proposition 3.1.4 ([Ke, Exercise 4.29]). (1) The set {(x,K) ∈ I × K |

x ∈ K} is closed in I ×K.

(2) The set {(K,L) ∈ K2 | K ⊂ L} is closed in K2.

(3) The map Kn −→ K; (K1, . . . , Kn) 7−→
⋃n

j=1 Kj is continuous for every

n ∈ N.

3.1.2 The product space KN

Definition 3.1.5. We denote by KN the set of all sequences of members of K,

and equip it with the product topology.

Proposition 3.1.6. The space KN is a compact metrisable space.

Proof. Use Proposition 3.1.3 and invoke the fact that compactness and metris-

ability are closed under taking countable products.

Definition 3.1.7. For K ∈ KN, m ∈ N, and r > 0, we set

U(K, m, r) = {L ∈ KN | d(Kn, Ln) ≤ r for all n ∈ [m]}.

Remark 3.1.8. Observe that U(K,m, r) is a closed subset of KN with nonempty

interior for every K ∈ KN, m ∈ N, and r > 0. It follows from the definition of

the product topology that for every K ∈ KN and every open neighbourhood U

of K, there exist m ∈ N and r > 0 satisfying U(K,m, r) ⊂ U .
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Chapter 3 3.2 Residuality of families of Fσ sets

3.1.3 The subspace KN
↗

Definition 3.1.9. We denote by KN
↗ the subset of KN consisting of all increasing

sequences:

KN
↗ = {K ∈ KN | K1 ⊂ K2 ⊂ · · · },

and equip it with the relative topology.

Proposition 3.1.10. The subset KN
↗ is closed in KN, and so it is a compact

metrisable space.

Proof. Observe that

KN
↗ =

∞⋂
n=1

{K ∈ KN | Kn ⊂ Kn+1}

and use Proposition 3.1.4 (2).

Definition 3.1.11. For K ∈ KN
↗, m ∈ N, and r > 0, we set

U↗(K,m, r) = {L ∈ KN
↗ | d(Kn, Ln) ≤ r for all n ∈ [m]}.

Remark 3.1.12. Observe that U↗(K,m, r) is a closed subset of KN
↗ with

nonempty interior for every K ∈ KN
↗, m ∈ N, and r > 0. It follows from

Remark 3.1.8 and the definition of the relative topology that for every K ∈ KN
↗

and every open neighbourhood U of K, there exist m ∈ N and r > 0 satisfying

U↗(K,m, r) ⊂ U .

3.2 Residuality of families of Fσ sets

Definition 3.2.1. We write Fσ for the family of all Fσ subsets of I.

Definition 3.2.2. For a subfamily F of Fσ, we put

KN
F =

{
K ∈ KN

∣∣∣∣∣
∞⋃

n=1

Kn ∈ F

}
.

We say that F is residual if KN
F is residual in KN and that F is ↗-residual if

KN
F ∩ KN

↗ is residual in KN
↗.
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Chapter 3 3.3 Residuality of σ-ideals of Fσ sets

The following is our main theorem in this chapter and asserts that these two

notions of residuality are the same:

Theorem 3.2.3 (Main Theorem in Chapter 3). A subfamily F of Fσ is

residual if and only if it is ↗-residual.

The proof of this theorem will be given in Section 3.5.

Remark 3.2.4. Theorem 3.2.3 remains true if we replace I by a compact dense-

in-itself metric space; the same proof works.

3.3 Residuality of σ-ideals of Fσ sets

Lemma 3.3.1. Let X and Y be topological spaces and suppose that X is second

countable. If A is a residual subset of X × Y , then

{
y ∈ Y

∣∣ {x ∈ X | (x, y) ∈ A} is residual
}

is residual.

Proof. We may assume that X is nonempty, and we take a countable base

{Un}n∈N for X such that Un ̸= ∅ for all n ∈ N. Since A is residual, we may

take open dense subsets Gm of X × Y such that
⋂∞

m=1 Gm ⊂ A. For m,n ∈ N,

write Vmn for the projection of Gm ∩ (Un × Y ) to Y . Every Vmn is open because

the projection is an open map. Moreover, every Vmn is dense because if O is

a nonempty open subset of Y , then the nonempty open set Un × O meets the

dense set Gm, which means that Vmn∩O ̸= ∅. Therefore
⋂∞

m,n=1 Vmn is residual.

We now only need to show that if y ∈
⋂∞

m,n=1 Vmn, then {x ∈ X | (x, y) ∈ A}

is residual. The set {x ∈ X | (x, y) ∈ Gm} is open because so is Gm; it is dense

because it meets every Un by the assumption on y. Hence the result follows from

the observation that

∞⋂
m=1

{x ∈ X | (x, y) ∈ Gm} ⊂ {x ∈ X | (x, y) ∈ A}.
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Chapter 3 3.4 Universal sets

Remark 3.3.2. The foregoing lemma is part of the Kuratowski-Ulam theorem;

see Theorem 8.41 of [Ke] for the whole theorem.

Lemma 3.3.3. Let X be a second countable topological space and Y a nonempty

Baire space. Then a subset A of X is residual if and only if A× Y is residual in

X × Y .

Proof. Suppose first that A × Y is residual. Then since Y is a nonempty Baire

space, Lemma 3.3.1 shows that {x ∈ X | (x, y) ∈ A × Y } is residual for some

y ∈ Y . It means that A is residual.

Conversely, suppose that A is residual. Take open dense subsets Gn of X

such that
⋂∞

n=1 Gn ⊂ A. Then Gn×Y is open dense and
⋂∞

n=1(Gn×Y ) ⊂ A×Y ,

from which we may conclude that A × Y is residual.

Proposition 3.3.4. If I is a σ-ideal on I, then I ∩ K is residual in K if and

only if I ∩ Fσ is residual in Fσ.

Proof. Since I is a σ-ideal, we have{
K ∈ KN

∣∣∣∣∣
∞⋃

n=1

Kn ∈ I

}
= {K ∈ KN | Kn ∈ I for every n ∈ N}

=
∞⋂

n=1

(
K × · · · × K︸ ︷︷ ︸

n − 1 times

×(I ∩ K) ×K ×K × · · ·
)
.

Therefore I ∩Fσ is residual in Fσ if and only if (I ∩K)×K×K×· · · is residual

in KN. Lemma 3.3.3 shows that the latter condition is equivalent to I ∩K being

residual in K. This proves the required equivalency.

3.4 Universal sets

Definition 3.4.1. Let X be a Polish space. We say that a subset A of I × X

is X-universal for Fσ if it has the following properties:

• A is an Fσ subset of I × X;
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Chapter 3 3.4 Universal sets

• a subset F of I is Fσ if and only if F = {t ∈ I | (t, x) ∈ A} for some

x ∈ X.

Remark 3.4.2. For every uncountable Polish space X, there exists an X-

universal set for Fσ (see [Ke, Exercise 22.6]).

If A is X-universal for Fσ, then it is natural to define residuality of families

of Fσ sets by declaring that F ⊂ Fσ is residual if

{
x ∈ X

∣∣ {t ∈ I | (t, x) ∈ A} ∈ F
}

is residual. Observe from the following proposition that our definitions of resid-

uality and ↗-residuality (Definition 3.2.2) are special cases of this definition of

residuality:

Proposition 3.4.3. The sets{
(K, x) ∈ KN × I

∣∣∣∣∣ x ∈
∞⋃

n=1

Kn

}
,

{
(K, x) ∈ KN

↗ × I

∣∣∣∣∣ x ∈
∞⋃

n=1

Kn

}

are KN- and KN
↗-universal for Fσ respectively.

Proof. We shall prove the KN-universality of the former set only; the same rea-

soning applies to the latter set as well. Denote the set by A . Since

A =
∞⋃

n=1

{(K, x) ∈ KN × I | x ∈ Kn}

and each set {(K, x) ∈ KN × I | x ∈ Kn} is the inverse image of the closed

set {(K,x) ∈ K × I | x ∈ K} (Proposition 3.1.4 (1)) under the projection

KN × I −→ K × I; (K, x) 7−→ (Kn, x), we find that A is Fσ. The other

requirement for A to be universal follows from the definition of Fσ sets.

Therefore Theorem 3.2.3 means that these two universal sets yield the same

residuality. However, as the following two propositions show, it is not true that

all universal sets give rise to the same residuality:
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Proposition 3.4.4 ([Ke, Exercise 23.21]). The set{
(f , x) ∈ C(I)N × I

∣∣∣ inf
n∈N

fn(x) > 0
}

is C(I)N-universal for Fσ.

Proposition 3.4.5. Let F be a subfamily F of Fσ. Then{
f ∈ C(I)N

∣∣∣∣ {
x ∈ I

∣∣∣ inf
n∈N

fn(x) > 0
}
∈ F

}
is residual if and only if ∅ ∈ F .

Proof. Define

A =
{

f ∈ C(I)N
∣∣∣ inf

n∈N
fn(x) = −∞ for all x ∈ I

}
.

We first show that the residuality of A implies the proposition. So suppose for

the moment that A is residual, and write

AF =

{
f ∈ C(I)N

∣∣∣∣ {
x ∈ I

∣∣∣ inf
n∈N

fn(x) > 0
}
∈ F

}
for F ⊂ Fσ. Note that {x ∈ I | infn∈N fn(x) > 0} = ∅ for every f ∈ A .

Therefore, if F ⊂ Fσ has ∅ as its element, then AF contains A and so it is

residual. Conversely, if AF is residual, then AF ∩ A is nonempty; we take an

element f of AF ∩ A to conclude that ∅ = {x ∈ I | infn∈N fn(x) > 0} ∈ F .

We now turn to the proof that A is residual. For t ∈ R, let At denote

the set of all f ∈ C(I)N such that maxx∈I fn(x) < t for some n ∈ N. Since

A ⊃
⋂

t∈Q At, it suffices to show that each At is open dense.

The density of At follows from the fact that it contains all sequences in C(I)N

of whose terms at least one is the constant function t − 1. To prove that At

is open, it is enough to show that for every n ∈ N the set of all f ∈ C(I)N

satisfying maxx∈I fn(x) < t is open. This follows from the observation that this

set is the inverse image of the open interval (−∞, t) under the composite of the

projection C(I)N −→ C(I); f 7−→ fn and the continuous function C(I) −→ R;

f 7−→ maxx∈I f(x), whose continuity follows from the inequality∣∣∣max
x∈I

f(x) − max
x∈I

g(x)
∣∣∣ ≤ ∥f − g∥

for f, g ∈ C(I).
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3.5 Proof of Theorem 3.2.3

We shall prove Theorem 3.2.3 in this section, throughout which we fix an arbi-

trary subfamily F of Fσ. The terms, symbols, and conventions introduced in

this section are valid within this section only.

3.5.1 Games we consider here

Definition 3.5.1. Let B denote the family of all subsets of KN that can be

written as U(K, m, r) for some K ∈ KN, m ∈ N, and r ∈ (0, 1) such that K1,

. . . , Km are pairwise disjoint finite sets and any two distinct points in
⋃m

n=1 Kn

have distance at least 3r.

Let B↗ denote the family of all subsets of KN
↗ that can be written as

U↗(K,m, r) for some K ∈ KN
↗, m ∈ N, and r ∈ (0, 1) such that Km is fi-

nite and any two distinct points in Km have distance at least 3r.

Remark 3.5.2. Whenever we write U(K,m, r
)
∈ B or U↗(K, m, r) ∈ B↗, we

understand that K, m, and r satisfy the conditions in Definition 3.5.1.

Remark 3.5.3. Let U(K, a, r
)
, U(L, b, s) ∈ B. It is easy to observe that if

K = L, a ≥ b, and r ≤ s, then U(K, a, r
)
⊂ U(L, b, s). The same is true

for B↗. Note that U(K, a, r
)
⊂ U(L, b, s) does not imply r ≤ s; for example,

consider the case where K1 = {0}, L1 = {0.1}, a = b = 1, r = 0.2, and s = 0.1.

Definition 3.5.4. By the game we mean the (KN,KN
F ,B)-Banach-Mazur game,

and by the ↗-game we mean the (KN
↗,KN

F ∩ KN
↗,B↗)-Banach-Mazur game.

Lemma 3.5.5. Theorem 3.2.3 is equivalent to the assertion that the game ad-

mits a winning strategy for Player II if and only if the ↗-game does.

Proof. Immediate from Theorem 2.2.4.
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3.5.2 Outline of the proof

We outline the proof that if the ↗-game admits a winning strategy for Player II,

then so does the game. Figure 3.1 illustrates this, and Figure 3.2 helps us to

imagine the outline of the proof of the other implication.

Suppose that Player I has chosen U(K1, a1, r1) ∈ B as his first move. Player II

transfers it to a certain set, say U↗(K̃
1
, ã1, r̃1) ∈ B↗, in the ↗-game. Then the

winning strategy for the ↗-game tells Player II to take a set U↗(L1, b1, s1) ∈

B↗, which she transfers to get her real reply U(L̃
1
, b̃1, s̃1) ∈ B in the game.

In a similar manner, after Player I replies U(K2, a2, r2) ∈ B, Player II obtains

U↗(K̃
2
, ã2, r̃2) ∈ B↗, U↗(L2, b2, s2) ∈ B↗, and U(L̃

2
, b̃2, s̃2) ∈ B. Player II

continues this strategy.

Since KN and KN
↗ are both compact, in either game the intersection of the

closed sets chosen by the players is nonempty. By modifying the winning strategy

for the ↗-game, we will assume that bm ≥ ãm and sm ≤ r̃m for all m ∈ N and

that limm→∞ bm = ∞ and limm→∞ sm = 0, so that the intersection in the ↗-

game will be a singleton. Furthermore, since the transfers will be executed in

such a way that b̃m ≥ bm and s̃m ≤ sm for all m ∈ N, the intersection in the

game will also be a singleton. It means that we may write

∞⋂
m=1

U(Km, am, rm) =
∞⋂

m=1

U(L̃
m

, b̃m, s̃m) = {P },

∞⋂
m=1

U↗(K̃
m

, ãm, r̃m) =
∞⋂

m=1

U↗(Lm, bm, sm) = {Q}.

Observe that

lim
m→∞

Km
n = lim

m→∞
L̃m

n = Pn, lim
m→∞

K̃m
n = lim

m→∞
Lm

n = Qn

for all n ∈ N.

In order to prove that this strategy for Player II in the game is winning, we

will need to check that P ∈ KN
F . Since Player II follows the winning strategy in

the ↗-game, we know that Q ∈ KN
F ∩KN

↗. Therefore it will be enough to show

that
⋃∞

n=1 Pn =
⋃∞

n=1 Qn.
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game ↗-game

Player I: U(K1, a1, r1) −→ U↗(K̃
1
, ã1, r̃1) y

strategy
Player II: U(L̃

1
, b̃1, s̃1) ←− U↗(L1, b1, s1)

Player I: U(K2, a2, r2) −→ U↗(K̃
2
, ã2, r̃2) y

strategy
Player II: U(L̃

2
, b̃2, s̃2) ←− U↗(L2, b2, s2)

...
...

...

↓ ↓

P Q

Figure 3.1: Winning strategy for the ↗-game induces one for the game

game ↗-game

Player I:
strategy x

U(L̃
1
, b̃1, s̃1) ←− U↗(L1, b1, s1)

Player II: U(K1, a1, r1) −→ U↗(K̃
1
, ã1, r̃1)

Player I:
strategy x

U(L̃
2
, b̃2, s̃2) ←− U↗(L2, b2, s2)

Player II: U(K2, a2, r2) −→ U↗(K̃
2
, ã2, r̃2)

...
...

...

↓ ↓

P Q

Figure 3.2: Winning strategy for the game induces one for the ↗-game

33



Chapter 3 3.5 Proof of Theorem 3.2.3

3.5.3 Details of the transfers

Conditions and definitions

A stage consists of two moves (one in the game and one in the ↗-game) which

lie at the same height in Figures 3.1 and 3.2. When we describe the situation at

a fixed stage, we omit the integer m indicating the stage unless ambiguity may

be caused: for example, we write Kn in place of Km
n . This is not only for simpler

notation; we try to offer explanation of the transfers that will go in the proofs of

both implications, and this omission solves the problem that when we describe

the stage having, say Km
n , the previous stage can have Lm−1

n or Lm
n depending

on which implication we look at.

The transfers are executed so that the following conditions, written as (∗)

afterwards, are fulfilled:

(1) ã ≥ a, b̃ ≥ b, r̃ ≤ r/2, and s̃ ≤ s/2 (in fact, ã = a and b̃ ∈ {b, b + 1});

(2)
⋃n

j=1 Kj ⊂ K̃n for n ∈ [a], and
⋃n

j=1 L̃j ⊂ Ln for n ∈ [b];

(3)
⋃a

n=1 Kn = K̃ã and
⋃b̃

n=1 L̃n = Lb.

For x ∈
⋃a

n=1 Kn = K̃ã, its affiliation (n1, n2) is the pair of the integer

n1 ∈ [a] with x ∈ Kn1 , called the first affiliation of x, and the least integer

n2 ∈ [ã] with x ∈ K̃n2 , called the second affiliation of x. We give a similar

definition for the points in
⋃b̃

n=1 L̃n = Lb: for x ∈
⋃b̃

n=1 L̃n = Lb, its affiliation

(n1, n2) is the pair of the integer n1 ∈ [b̃] with x ∈ L̃n1 , called the first affiliation

of x, and the least integer n2 ∈ [b] with x ∈ Ln2 , called the second affiliation

of x. Strictly speaking, we should specify the stage at which the affiliations are

defined, because, for instance, it may be that Lm
bm ∩Lm′

bm′ ̸= ∅ for distinct m and

m′. However, since we can easily guess the stage from the context, we choose

not to specify it in order to avoid complexity.

Remark 3.5.6. Condition (2) in (∗) is equivalent to the condition that the first

affiliation is always greater than or equal to the second affiliation.
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Let us look at U(K, a, r) ∈ B and U↗(K̃, ã, r̃) ∈ B↗ at any stage except

the first one. We have U(L̃, b̃, s̃) ∈ B and U↗(L, b, s) ∈ B↗ at the previous

stage. Since U(K, a, r) ⊂ U(L̃, b̃, s̃), for each x ∈
⋃b̃

n=1 Kn there exists a unique

y ∈
⋃b̃

n=1 L̃n = Lb satisfying |x − y| ≤ s̃, where uniqueness follows from the

assumption that any two distinct points in
⋃b̃

n=1 L̃n have distance at least 3s̃.

This y is called the parent of x. Observe that if x ∈ Kn then y ∈ L̃n; that is

to say, x and y have the same first affiliation. We give a similar definition also

when we look at U↗(L, b, s) ∈ B↗ and U(L̃, b̃, s̃) ∈ B: the parent of x ∈ Lã is

the unique y ∈
⋃a

n=1 Kn = K̃ã satisfying |x − y| ≤ r̃. Observe that if x ∈ Ln

then y ∈ K̃n; that is to say, the second affiliation of y is less than or equal to

that of x. Note that x and y may have different second affiliations; for example,

if K̃1 = K̃2 = {0}, ã = 2, r̃ = 0.2, L1 = {0.01}, L2 = {0.01, 0.1}, b = 2, and

s = 0.001, then x = 0.1 has second affiliation 2, but its parent y = 0 has second

affiliation 1.

Transfers from the game to the ↗-game

Given a move U(K, a, r) ∈ B, we shall construct its transfer U↗(K̃, ã, r̃) ∈ B↗.

If it is the first move of Player I, then we put ã = a, r̃ = r/2, and K̃n =
⋃n

j=1 Kj

for every n ∈ N, and we can easily see that the conditions (∗) are fulfilled. So

suppose otherwise. Then we already know U↗(L, b, s) ∈ B↗ and its transfer

U(L̃, b̃, s̃) ∈ B, and we have U(K, a, r) ⊂ U(L̃, b̃, s̃).

Put ã = a and r̃ = min{s − s̃, r/2}, and define K̃n =
⋃n

j=1 Kj for n > b̃.

For n ≤ b̃, we let K̃n consist of those x ∈
⋃b̃

n=1 Kn whose parent has the second

affiliation at most n; then each x ∈
⋃b̃

n=1 Kn will have the same affiliation as its

parent.

Claim 1. We have d(K̃n, Ln) ≤ s̃ for n ∈ [b].

Proof. Fix such an integer n.

Let x ∈ K̃n and denote its affiliation by (n1, n2). Then the parent y of x

has affiliation (n1, n2) and so belongs to Ln2 . It follows from y ∈ Ln2 ⊂ Ln and
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|x − y| ≤ s̃ that x ∈ B(Ln, s̃).

Conversely, let y ∈ Ln and denote its affiliation by (n1, n2). Then there

exists a point x ∈ Kn1 with |x − y| ≤ s̃ because d(Kn1 , L̃n1) ≤ s̃. Since y is

the parent of x, the affiliation of x is (n1, n2). Therefore x ∈ K̃n2 ⊂ K̃n and so

y ∈ B(K̃n, s̃).

We may deduce from this claim that U↗(K̃, ã, r̃) ⊂ U↗(L, b, s) using the

triangle inequality and r̃ + s̃ ≤ s. Therefore U↗(K̃, ã, r̃) is a valid reply in the

↗-game. It is easy to see that the conditions (∗) are fulfilled.

Transfers from the ↗-game to the game

Given a move U↗(L, b, s) ∈ B↗, we shall construct its transfer U(L̃, b̃, s̃) ∈ B.

If it is the first move of Player I, then we put b̃ = b, s̃ = s/2, and

L̃n =


L1 if n = 1;

Ln \ Ln−1 if 2 ≤ n ≤ b;

I if n ≥ b + 1.

(Remember that the sets L̃n for n > b̃ = b do not have to be pairwise disjoint

or finite.) We can easily see that the conditions (∗) are fulfilled in this case.

So suppose otherwise. Then we already know U(K, a, r) ∈ B and its transfer

U↗(K̃, ã, r̃) ∈ B↗, and we have U↗(L, b, s) ⊂ U↗(K̃, ã, r̃).

Put b̃ = b + 1 and s̃ = min{r − r̃, s/2}, and define L̃n = Ln−1 for n > b̃.

We define L̃n for n ≤ b̃ by determining the first affiliation of each point in Lb as

follows. Let x ∈ Lb and denote its second affiliation by n2. If n2 > ã, then the

first affiliation of x is n2. Suppose n2 ≤ ã, and let y ∈ K̃n2 denote the parent of

x. If the second affiliation of y is n2, then the first affiliation of x is the same as

that of y; otherwise the first affiliation of x is b̃.

Claim 2. We have d(L̃n, Kn) ≤ r̃ for n ∈ [a].

Proof. Fix such an integer n.
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Let x ∈ L̃n and denote its parent by y. Then it follows that x and y have

the same affiliation, and so y ∈ Kn. Hence we may infer from |x − y| ≤ r̃ that

x ∈ B(Kn, r̃).

Conversely, let y ∈ Kn and denote its second affiliation by n2. Then there

exists a point x ∈ Ln2 with |x − y| ≤ r̃ because d(K̃n2 , Ln2) ≤ r̃. Since y is the

parent of x and has the same second affiliation as x, the first affiliation of x is

n. Therefore y ∈ B(L̃n, r̃).

We may deduce from the claim that U(L̃, b̃, s̃) ⊂ U(K, a, r) using the triangle

inequality and r̃ + s̃ ≤ r. Therefore U(L̃, b̃, s̃) is a valid reply in the game. It is

easy to see that the conditions (∗) are fulfilled.

3.5.4 Proof of
⋃∞

n=1 Pn =
⋃∞

n=1 Qn

We shall prove that
⋃∞

n=1 Pn =
⋃∞

n=1 Qn, which will complete the proof of Theo-

rem 3.2.3 due to Lemma 3.5.5. Recall that limm→∞ Km
n = Pn and limm→∞ K̃m

n =

Qn for every n ∈ N.

In order to prove
⋃∞

n=1 Pn ⊂
⋃∞

n=1 Qn, it is enough to show that
⋃n

j=1 Pj ⊂ Qn

for every n ∈ N. Since
⋃n

j=1 Km
j ⊂ K̃m

n for all m ∈ N, we obtain
⋃n

j=1 Pj ⊂ Qn

by Proposition 3.1.4 (2), (3).

Now we shall prove
⋃∞

n=1 Qn ⊂
⋃∞

n=1 Pn. Let x ∈
⋃∞

n=1 Qn, and denote

by n the least positive integer with x ∈ Qn. Since it is easy to observe that

Km
1 = K̃m

1 for every m ∈ N, which implies P1 = Q1, we may assume that

n ≥ 2. Because Qn−1 is closed and x /∈ Qn−1, there exists r ∈ (0, 1) satisfying

B(x, 4r) ∩ Qn−1 = ∅, that is, x /∈ B(Qn−1, 4r). Fix a positive integer m0 such

that ãm ≥ n, r̃m ≤ r, and d(K̃m
n−1, Qn−1) ≤ r for every m ≥ m0. Observe that

x /∈ B(K̃m
n−1, 3r) for every m ≥ m0.

Set k0 = ⌈1/r⌉. For each k ≥ k0, choose mk ≥ m0 satisfying d(K̃m
n , Qn) ≤

1/k for every m ≥ mk, and for each m ≥ mk take ykm ∈ K̃m
n with |x−ykm| ≤ 1/k

and let zkm ∈ K̃m0
n denote the unique point satisfying |ykm − zkm| ≤ r̃m0 .

Claim 3. The two points ykm and zkm have the same affiliation.
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Proof. By an ancestor of ykm we mean a point that can be written as ‘the parent

of . . . the parent of ykm.’ Observe that zkm is an ancestor of ykm. Indeed if we

denote by z′km the ancestor of ykm in K̃m0
n , then

|ykm − z′km| < r̃m0 +
r̃m0

2
+

r̃m0

22
+ · · · = 2r̃m0

and so |zkm − z′km| < 3r̃m0 , which implies zkm = z′km.

In order to prove our claim, it suffices to prove that the second affiliation

of the ancestor w ∈ K̃m′
n of ykm is n for every m′ ∈ {m0, . . . ,m}. We can see

|w − ykm| ≤ 2r̃m′ ≤ 2r by the same reasoning as above. Therefore we have

|w − x| ≤ |w − ykm| + |ykm − x| ≤ 2r +
1

k
≤ 3r.

It follows that the second affiliation of w cannot be less than n because x /∈

B(K̃m′
n−1, 3r).

Note that all zkm belong to the single finite set K̃m0
n . We can choose zk ∈ Km0

n

for k ≥ k0 inductively so that the set

{m ≥ mk | zk0m = zk0 , . . . , zkm = zk }

is infinite for any k ≥ k0. Then we take z ∈ Km0
n for which { k ≥ k0 | zk = z } is

infinite, and put { k ≥ k0 | zk = z } = {k1, k2, . . . }, where k1 < k2 < · · · . Since

the set

{m ≥ mkj
| zk1m = · · · = zkjm = z }

is infinite for every j ∈ N, we may construct a strictly increasing sequence m′
1,

m′
2, . . . of positive integers satisfying zk1m′

j
= · · · = zkjm′

j
= z.

Let l denote the first affiliation of z. Then the foregoing claim shows that

whenever i ≤ j, the first affiliation of ykim′
j

is l, which implies that x belongs

to B(K
m′

j

l , 1/ki). For any i ∈ N, since d(K
m′

j

l , Pl) ≤ 1/ki for sufficiently large j,

we have x ∈ B(Pl, 2/ki). Hence x ∈
⋂∞

i=1 B(Pl, 2/ki) = Pl. This completes the

proof.
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Knot points of typical

continuous functions

4.1 Statement of the main theorem

Having defined the residuality of families of Fσ sets, we are now ready to state

the main theorem of this thesis. Recall that N(f) denotes the set of all points

in I that are not knot points of f ∈ C(I) (see Definition 1.1.5), and that the

following theorem has been announced by Zaj́ıček [Za] and proved by Preiss and

Zaj́ıček [PZ]:

Theorem 4.1.1 ([PZ], [Za, Theorem 2.5]). For a σ-ideal I on I, the follow-

ing are equivalent:

(1) a typical function f ∈ C(I) has the property that N(f) ∈ I;

(2) I ∩ K is residual in K.

Our main theorem is the following, established by Preiss and the author:

Theorem 4.1.2 (Main Theorem, [PS]). For a family S of subsets of I, the

following are equivalent:

(1) a typical function f ∈ C(I) has the property that N(f) ∈ S.
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(2) S ∩ Fσ is residual in Fσ.

Observe that Theorem 4.1.2 generalises Theorem 4.1.1 due to Proposition 3.3.4.

4.2 Basic properties of K

Definition 4.2.1. Let D denote the dense subset of KN consisting of all se-

quences whose terms are pairwise disjoint finite sets.

Lemma 4.2.2. If K,L ∈ K and r > 0 are such that K ⊂ B(L, r), then K ⊂

B(L, r − ε) for some ε > 0.

Proof. Suppose that K ̸⊂ B(L, r − ε) for all ε > 0, and take xn ∈ K \ B(L, r −

1/n) for each n ∈ N. We may assume that xn is convergent, say to x. Since

x ∈ K ⊂ B(L, r), there exists y ∈ L with |x − y| < r. By the choice of xn, we

have |xn − y| ≥ r − 1/n, and so |x − y| ≥ r, which is a contradiction.

Corollary 4.2.3. For every r > 0, the set {(K,L) ∈ K2 | K ⊂ B(L, r)} is open

in K2.

Proof. Let (K0, L0) belong to the set, and take ε > 0 with K0 ⊂ B(L0, r −

ε) using the previous lemma. If (K,L) ∈ K2 satisfies d(K,K0) < ε/2 and

d(L,L0) < ε/2, then

K ⊂ B(K0, ε/2) ⊂ B(L0, r − ε/2) ⊂ B(L, r).

This completes the proof.
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4.3 Basic properties of N(f, a)

4.3.1 Definition of N(f, a)

Definition 4.3.1. For f ∈ C(I) and a > 0, we define

N+(f, a) = {x ∈ [0, 1 − 2−a] | f(y) − f(x) ≤ a(y − x) for all y ∈ [x, x + 2−a]},

N+(f, a) = {x ∈ [0, 1 − 2−a] | f(y) − f(x) ≥ −a(y − x) for all y ∈ [x, x + 2−a]},

N−(f, a) = {x ∈ [2−a, 1] | f(y) − f(x) ≥ a(y − x) for all y ∈ [x − 2−a, x]},

N−(f, a) = {x ∈ [2−a, 1] | f(y) − f(x) ≤ −a(y − x) for all y ∈ [x − 2−a, x]},

and

N̂(f, a) = N+(f, a) ∪ N−(f, a),

Ň(f, a) = N+(f, a) ∪ N−(f, a),

N(f, a) = N̂(f, a) ∪ Ň(f, a)

= N+(f, a) ∪ N+(f, a) ∪ N−(f, a) ∪ N−(f, a).

Convention 4.3.2. We shall use the symbol Ñ in a statement to mean that

the statement with Ñ replaced by N̂ and the statement with Ñ replaced by Ň

are both true; for instance, by Ñ(f, a) ⊂ Ñ(g, b) we mean N̂(f, a) ⊂ N̂(g, b)

and Ň(f, b) ⊂ Ň(g, b).

Remark 4.3.3. The mean value theorem shows that

|2−a − 2−b| ≤ |a − b| log 2 ≤ |a − b|

for all a, b > 0. This estimate will sometimes be used implicitly in this thesis.

Proposition 4.3.4. If f ∈ C(I) and 0 < a1 < a2 < · · · → ∞, then N(f) =⋃∞
n=1 N(f, an).

Proof. Trivial.
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4.3.2 Descriptive properties of knot points

Proposition 4.3.5. For every f ∈ C(I) and a > 0, the sets N±(f, a), N±(f, a),

Ñ(f, a), and N(f, a) are all closed. Therefore N(f) is Fσ for every f ∈ C(I).

Proof. Obviously it suffices to show that N+(f, a) is closed. Suppose that a

sequence xn of points in N+(f, a) converges to a point x. Since xn ∈ [0, 1− 2−a]

for all n ∈ N, we have x ∈ [0, 1 − 2−a]. Assume for a contradiction that f(y) −

f(x) > a(y−x) for some y ∈ [x, x+2−a]. By the continuity of f , we may assume

that y ∈ (x, x + 2−a). Then since xn converges to x and f is continuous, there

exists n ∈ N such that y ∈ (xn, xn + 2−a) and f(y) − f(xn) > a(y − xn), which

contradicts xn belonging to N+(f, a).

It is natural to ask whether N(f) being Fσ is the best possible result. Ob-

viously N(f) does belong to a lower descriptive class for some f ∈ C(I); for

example, N(f) = I if f is differentiable. However, it turns out that N(f) is not

Gδ for typical functions. We include its easy proof for completeness, though we

do not use this result afterwards.

Proposition 4.3.6. For a typical function f ∈ C(I), the set N(f) is not Gδ,

i.e. N(f) is true Fσ.

Proof. By Theorem 1.1.4, it is enough to prove that N(f) is dense in I for every

f ∈ C(I) and that no dense null Fσ subset of I is Gδ.

The former follows from the observation that for each nondegenerate closed

subinterval J of I, any point at which f restricted to J attains its maximum

must belong to N(f).

To show the latter, consider any dense null Fσ subset F of I, and write

F =
⋃∞

n=1 Fn with closed sets Fn. For every n, since Fn is null, it must have

empty interior, and so it must be nowhere dense. Hence F is meagre. If F were

Gδ, then F would be residual because F is dense. Therefore F is not Gδ.

By Proposition 4.3.5, we can restate our main theorem (Theorem 4.1.2) as

follows:
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Theorem 4.3.7 (Main Theorem). For a subfamily F of Fσ, the following

are equivalent:

(1) a typical function f ∈ C(I) has the property that N(f) ∈ F ;

(2) F is residual.

4.3.3 Continuity of N(f, a)

Proposition 4.3.8. Suppose that 0 < a < b and ε > 0. Then there exists

δ > 0 such that whenever f, g ∈ C(I) satisfy ∥f − g∥ < δ, we have Ñ(f, a) ⊂

B
(
Ñ(g, b), ε

)
and N(f, a) ⊂ B

(
N(g, b), ε

)
.

Proof. We may assume that ε < 2−a − 2−b without loss of generality. Choose

δ > 0 with δ < ε(b − a)/2. We shall show that this δ satisfies the required

condition. It suffices to prove that N+(f, a) ⊂ B
(
N+(g, b), ε

)
.

Take any x ∈ N+(f, a), and let y0 ∈ [x, x + 2−a] be a point at which the

continuous function y 7−→ g(y)− by defined on [x, x+2−a] attains its maximum.

It is enough to show that x ≤ y0 < x + ε and y0 ∈ N+(g, b).

The definition of y0 gives g(y0) − by0 ≥ g(x) − bx, which implies

b(y0 − x) ≤ g(y0) − g(x) < f(y0) − f(x) + 2δ ≤ a(y0 − x) + 2δ

because x ∈ N+(f, a) and y0 ∈ [x, x+2−a]. It follows that y0−x < 2δ/(b−a) < ε.

With the aim of proving y0 ∈ N+(g, b), take any y ∈ [y0, y0 + 2−b]. Since

x ≤ y0 ≤ y ≤ y0 + 2−b < x + ε + 2−b < x + 2−a,

the definition of y0 again gives g(y0) − by0 ≥ g(y) − by, or equivalently g(y) −

g(y0) ≤ b(y − y0). This completes the proof.

4.3.4 Properties of continuously differentiable functions

Lemma 4.3.9. If f ∈ C1(I) and 0 < a < b, then there exists δ > 0 such that

B
(
Ñ(f, a), δ

)
⊂ Ñ(f, b).
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Proof. By symmetry, it suffices to show that B
(
N+(f, a), δ

)
⊂ N+(f, b) for some

δ > 0. Suppose that this is false. For each n ∈ N, let δn = (2−a − 2−b)/n and

take xn ∈ B
(
N+(f, a), δn

)
\N+(f, b). We may assume that xn converges, say to

x. Observe that

x ∈
∞⋂

n=1

B
(
N+(f, a), δn + |x − xn|

)
= N+(f, a).

Since

xn ∈ B
(
N+(f, a), δn

)
\ N+(f, b)

⊂ B([0, 1 − 2−a], 2−a − 2−b) \ N+(f, b)

⊂ [0, 1 − 2−b] \ N+(f, b),

we may take yn ∈ (xn, xn+2−b] with f(yn)−f(xn) > b(yn−xn). We may assume

that yn converges, say to y. The continuity of f shows that f(y)−f(x) ≥ b(y−x),

whereas we have f(y) − f(x) ≤ a(y − x) because x ∈ N+(f, a) and x ≤ y ≤

x + 2−b < x + 2−a. It follows that y = x.

By the mean value theorem, we may take zn ∈ (xn, yn) with

f ′(zn) =
f(yn) − f(xn)

yn − xn

> b.

Since both xn and yn converge to x, so does zn. The continuity of f ′ shows that

f ′(x) ≥ b, which contradicts x ∈ N+(f, a).

Corollary 4.3.10. If f ∈ C1(I) and 0 < a < b, then Ñ(f, a) ⊂ Int Ñ(f, b).

Proof. Immediate from Lemma 4.3.9.

Proposition 4.3.11. Suppose that f ∈ C1(I) and 0 < a < b. Then there exists

δ > 0 such that B
(
Ñ(g, a), δ

)
⊂ Ñ(f, b) for every g ∈ B(f, δ).

Proof. Set c = (a + b)/2, so that 0 < a < c < b. By Lemma 4.3.9 we may find

ε > 0 with B
(
Ñ(f, c), 2ε

)
⊂ Ñ(f, b), and by Proposition 4.3.8 we may find τ > 0

such that Ñ(g, a) ⊂ B
(
Ñ(f, c), ε

)
for all g ∈ B(f, τ). We set δ = min{ε, τ}.

Then for every g ∈ B(f, δ), we have

B
(
Ñ(g, a), δ

)
⊂ B

(
Ñ(f, c), δ + ε

)
⊂ B

(
Ñ(f, c), 2ε

)
⊂ Ñ(f, b).
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Lemma 4.3.12. Suppose that f ∈ C1(I) and 0 < a < c < b. Then there exists

ε > 0 such that for each x ∈ [0, 1−2−a]\N+(f, b), we may find y ∈ (x+ε, x+2−b]

with f(y) − f(x) > c(y − x).

Proof. Suppose that the lemma is false. Then for each n ∈ N, we may find

xn ∈ [0, 1 − 2−a] \ N+(f, b) such that f(y) − f(xn) ≤ c(y − xn) for all y ∈

(xn +1/n, xn +2−b]. We may assume that xn converges, say to x ∈ [0, 1−2−a] ⊂

[0, 1 − 2−b].

Firstly, we prove that f(y)−f(x) ≤ c(y−x) for all y ∈ (x, x+2−b). Fix such

y. For sufficiently large n, since y ∈ (xn +1/n, xn +2−b), we have f(y)−f(xn) ≤

c(y−xn) by the choice of xn. Letting n → ∞, we obtain f(y)−f(x) ≤ c(y−x).

Now, it follows that f ′(x) ≤ c, and so f ′ ≤ b in some neighbourhood of

x because f ∈ C1(I). Take n ∈ N so large that the interval [xn, xn + 1/n]

is contained in the neighbourhood. Then the mean value theorem shows that

f(y)−f(xn) ≤ b(y−xn) for all y ∈ [xn, xn +1/n]. This, together with the choice

of xn, implies that xn ∈ N+(f, b), a contradiction.

Proposition 4.3.13. Suppose that f ∈ C1(I) and 0 < a < b. Then there exists

l > 0 such that every set of one of the following forms contains an open interval

of length l:

(1) {y ∈ [x, x + 2−a] | f(y) − f(x) > a(y − x)} for x ∈ [0, 1 − 2−a] \ N+(f, b);

(2) {y ∈ [x, x + 2−a] | f(y)− f(x) < −a(y − x)} for x ∈ [0, 1− 2−a] \N+(f, b);

(3) {y ∈ [x − 2−a, x] | f(y) − f(x) < a(y − x)} for x ∈ [2−a, 1] \ N−(f, b);

(4) {y ∈ [x − 2−a, x] | f(y) − f(x) > −a(y − x)} for x ∈ [2−a, 1] \ N−(f, b).

Proof. Set c = (a + b)/2 and choose ε > 0 as in Lemma 4.3.12. Then take l > 0

so that l/2 < min{ε, 2−a − 2−b} and (∥f ′∥ + a)l/2 < (c − a)ε. We shall show

that this l satisfies the required condition. By symmetry, we only need to look

at sets of the first form.
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Let x ∈ [0, 1 − 2−a] \ N+(f, b) and set

S = {y ∈ [x, x + 2−a] | f(y) − f(x) > a(y − x)}.

By the choice of ε, we may find t ∈ (x + ε, x + 2−b] with f(t)− f(x) > c(t− x).

It suffices to show that S contains the open interval (t − l/2, t + l/2). If y ∈

(t − l/2, t + l/2), then since

y > t − l/2 > x + ε − l/2 > x,

y < t + l/2 ≤ x + 2−b + l/2 < x + 2−a,

and

f(y) − f(x) − a(y − x) =
(
f(y) − f(t)

)
+

(
f(t) − f(x)

)
− a(y − x)

> −∥f ′∥|y − t| + c(t − x) − a(y − x)

= (c − a)(t − x) − ∥f ′∥|y − t| − a(y − t)

≥ (c − a)(t − x) − (∥f ′∥ + a)|y − t|

> (c − a)ε − (∥f ′∥ + a)l/2

> 0,

it follows that y ∈ S.

4.3.5 Bump functions

Definition 4.3.14. Let Ĥ and Ȟ be disjoint finite subsets of I, and h and w

be positive numbers. A bump function of height h and width w located at Ĥ

and Ȟ is a function φ ∈ C1(I) with the following properties:

• ∥φ∥ = h;

• φ(x) = h for all x ∈ Ĥ and φ(x) = −h for all x ∈ Ȟ;

• {x ∈ I | φ(x) > 0} ⊂ B(Ĥ, w) and {x ∈ I | φ(x) < 0} ⊂ B(Ȟ, w).

Remark 4.3.15. If Ĥ, Ȟ, h, and w satisfy the conditions at the beginning

of the definition above, there exists a bump function of height h and width w

located at Ĥ and Ȟ.

46



Chapter 4 4.3 Basic properties of N(f, a)

Proposition 4.3.16. Let f ∈ C(I) and a > 0. Suppose that φ is a bump

function of height h > 0 and width w > 0 located at Ĥ and Ȟ, where Ĥ and Ȟ

are disjoint finite subsets of I. Then, setting g = f + φ, we have H̃ ∩ Ñ(f, a) ⊂

Ñ(g, a).

Proof. It suffices to show that Ĥ∩N̂(f, a) ⊂ N̂(g, a). Let x ∈ Ĥ∩N̂(f, a). Then

x ∈ N+(f, a) ∪ N−(f, a), and we may assume that x ∈ N+(f, a) by symmetry.

We have x ∈ [0, 1 − 2−a] by the definition of N+(f, a); if y ∈ [x, x + 2−a], then

g(y) − g(x) =
(
f(y) + φ(y)

)
−

(
f(x) + h

)
≤ f(y) − f(x) ≤ a(y − x).

It follows that x ∈ N+(g, a).

Proposition 4.3.17. Suppose that f ∈ C1(I), 0 < a < b, and h > 0. Then

there exists µ > 0 with the following property:

Suppose that φ is a bump function of height h and width w > 0

located at Ĥ and Ȟ, where Ĥ and Ȟ are disjoint finite subsets

of I satisfying B(H̃, µ) = I. Then, setting g = f + φ, we have

Ñ(g, a) ⊂ Ñ(f, b) ∩ B(H̃, w).

Proof. Choose l > 0 as in Proposition 4.3.13. Take µ > 0 so small that µ < l/2,

2µ < 2−a, and 2µ(∥f ′∥+a) < h. We shall show that this µ satisfies the required

condition. Let φ and g be as in the statement. By symmetry, it suffices to show

that N+(g, a) ⊂ N+(f, b) ∩ B(Ĥ, w). Let x ∈ N+(g, a).

Firstly, we show that x ∈ N+(f, b). Assume, to derive a contradiction, that

x /∈ N+(f, b). Then, since

x ∈ N+(g, a) \ N+(f, b) ⊂ [0, 1 − 2−a] \ N+(f, b),

the set {y ∈ [x, x + 2−a] | f(y) − f(x) > a(y − x)} contains an open interval

of length l. Because B(Ĥ, l/2) ⊃ B(Ĥ, µ) = I, we may find y ∈ Ĥ such that

y ∈ [x, x + 2−a] and f(y) − f(x) > a(y − x). Then

g(y) − g(x) =
(
f(y) + h

)
−

(
f(x) + φ(x)

)
≥ f(y) − f(x) > a(y − x),

47



Chapter 4 4.4 A topological zero-one law and a key proposition

which contradicts the assumption that x ∈ N+(g, a).

Secondly, we show that x ∈ B(Ĥ, w). Because B(Ĥ, µ) = I, we may find

y ∈ [x, x + 2µ] ∩ Ĥ. Then

a(y − x) ≥ g(y) − g(x) =
(
f(y) + h

)
−

(
f(x) + φ(x)

)
≥ h − φ(x) − ∥f ′∥(y − x),

which implies that

φ(x) ≥ h − (∥f ′∥ + a)(y − x) ≥ h − 2µ(∥f ′∥ + a) > 0.

It follows that x ∈ B(Ĥ, w).

Definition 4.3.18. If f ∈ C1(I), 0 < a < b and h > 0, then µ(f, a, b, h) denotes

a positive number µ with the property in Proposition 4.3.17.

4.4 A topological zero-one law and a key propo-

sition

4.4.1 A topological zero-one law

Definition 4.4.1. Let X be a set. A subset A of XN is said to be invariant

under finite permutations if for every permutation σ on N that fixes all but

finitely many positive integers and for every x ∈ A, we have (xσ(n)) ∈ A.

Proposition 4.4.2 ([Ke, Theorem 8.46]). Let X be a Baire space and G

a group of homeomorphisms on X with the property that for every pair of

nonempty open subsets U and V of X, there exists φ ∈ G such that φ(U)∩V ̸= ∅.

Suppose that a subset A of X has the Baire property and that φ(A) = A for

every φ ∈ G. Then A is either meagre or residual.

Remark 4.4.3. If G is a group of bijections on a set X and A is a subset of X,

then the condition that φ(A) = A for all φ ∈ G is equivalent to the condition

that φ(A) ⊂ A for all φ ∈ G.
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Proposition 4.4.4. Let X be a Baire space and A a subset of XN that is

invariant under finite permutations and has the Baire property. Then A is

either meagre or residual.

Proof. Since the proposition is obvious if X = ∅, we may assume that X ̸= ∅

and take an element a ∈ X.

For each permutation σ on N, let φσ be the homeomorphism on XN defined

by φσ(x) = (xσ(n)) for x ∈ XN. Write G for the set of all φσ where σ is a

permutation that fixes all but finitely many positive integers. It is obvious that

G is a group. In the light of Proposition 4.4.2, it suffices to show that for every

pair of nonempty open subsets U and V of XN, there exists φ ∈ G such that

φ(U) ∩ V ̸= ∅.

Let U and V be nonempty open subsets of XN. Take u ∈ U and v ∈ V , and

choose m ∈ N so that x ∈ U if xn = un for all n ∈ [m], and x ∈ V if xn = vn

for all n ∈ [m]. Define a permutation σ on N by setting

σ(n) =


n + m for n ∈ [m];

n − m for n ∈ [2m] \ [m];

n for n ∈ N \ [2m].

Then σ fixes all integers greater than 2m, and so φσ ∈ G. Moreover, φσ satisfies

φσ(U) ∩ V ̸= ∅ because (u1, . . . , um, v1, . . . , vm, a, a, . . . ) ∈ U and

φσ

(
(u1, . . . , um, v1, . . . , vm, a, a, . . . )

)
= (v1, . . . , vm, u1, . . . , um, a, a, . . . ) ∈ V.

This completes the proof.

4.4.2 Definition and basic properties of X

Definition 4.4.5. (1) We put

X = {a ∈ (0,∞)N | a1 < a2 < · · · → ∞},

Y = {δ ∈ (0, 1)N | δ1 > δ2 > · · · → 0},

Z = {n ∈ NN | nj+1 ≥ nj + j for all j ∈ N}.
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These are Polish spaces in the relative topology because they are Gδ sub-

sets of the Polish spaces (0,∞)N, (0, 1)N, and NN respectively (see Propo-

sition 2.3.3 (2)).

(2) For n ∈ Z and j,m ∈ N with j ≤ m, we define a finite subset Am
j (n) of N

by

Am
j (n) = [nj] ∪

m−1⋃
i=j

{ni + 1, . . . , ni + j − 1}.

For n ∈ Z and k ∈ Z+, we define nk ∈ Z by setting nk
j = nj+k for j ∈ N.

(3) Let n ∈ Z and δ ∈ Y . For k ∈ Z+, we define Sk(n, δ) as the set of all

K ∈ KN such that ⋃
n∈Am

j (nk)\Am−1
j (nk)

Kn ⊂
⋃

n∈Am−1
j−1 (nk)

B(Kn, δm)

whenever 2 ≤ j ≤ m− 1. In addition we define S (n, δ) =
⋃∞

k=0 Sk(n, δ).

Remark 4.4.6. To be precise, the definition of Am
j (n) is as follows:

Am
j (n) =

[nj] if j = 1 or j = m;

[nj] ∪
⋃m−1

i=j {ni + 1, . . . , ni + j − 1} if 2 ≤ j ≤ m − 1.

Remark 4.4.7. For the reader’s convenience, we spell out Am
j (n) for small j

and m, writing Am
j = Am

j (n) for simplicity:

(1) if j = 1, then Am
1 = [n1] for all m ∈ N;

(2) if j = 2, then A2
2 = [n2], A3

2 = [n2 + 1], A4
2 = [n2 + 1] ∪ {n3 + 1},

A5
2 = [n2 + 1] ∪ {n3 + 1, n4 + 1} and so forth;

(3) if j = 3, then A3
3 = [n3], A4

3 = [n3 + 2], A5
3 = [n3 + 2] ∪ {n4 + 1, n4 + 2},

A6
3 = [n3 + 2] ∪ {n4 + 1, n4 + 2, n5 + 1, n5 + 2} and so forth.

Remark 4.4.8. Note that Am
j (n) depends only on nk for k ∈ [max{j,m− 1}];

in particular, Am
j (n) = Am

j (n′) if nk = n′
k for all k ∈ [m].

Proposition 4.4.9. Let n ∈ Z, δ ∈ Y , and k ∈ Z+.
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(1) [nj] = Aj
j(n) ⊂ Aj+1

j (n) ⊂ Aj+2
j (n) ⊂ · · · for every j ∈ N, and [n1] =

Am
1 (n) ⊂ · · · ⊂ Am

m(n) = [nm] for every m ∈ N. In particular, [nj] ⊂

Am
j (n) ⊂ [nm] whenever j ≤ m.

(2) Am+1
j (nk) ⊂ Am

j (nk+1) for all j,m ∈ N with j ≤ m.

(3) Sk(n, δ) = S0(n
k, δ).

(4) Sk(n, δ) ⊂ Sk+1(n, δ).

Proof. (1) Immediate from the definition.

(2) We have

Am
j (nk+1) = [nk+1

j ] ∪
m−1⋃
i=j

{nk+1
i + 1, . . . , nk+1

i + j − 1}

= [nk
j+1] ∪

m−1⋃
i=j

{nk
i+1 + 1, . . . , nk

i+1 + j − 1}

⊃ [nk
j + j − 1] ∪

m⋃
i=j+1

{nk
i + 1, . . . , nk

i + j − 1}

= [nk
j ] ∪

m⋃
i=j

{nk
i + 1, . . . , nk

i + j − 1}

= Am+1
j (nk).

(3) Immediate from the definition.

(4) Suppose that K ∈ Sk(n, δ) and 2 ≤ j ≤ m − 1. Then we have

Am
j (nk+1) \ Am−1

j (nk+1) = {nk+1
m−1 + 1, . . . , nk+1

m−1 + j − 1}

= {nk
m + 1, . . . , nk

m + j − 1}

= Am+1
j (nk) \ Am

j (nk),
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which, together with (2), implies that⋃
n∈Am

j (nk+1)\Am−1
j (nk+1)

Kn =
⋃

n∈Am+1
j (nk)\Am

j (nk)

Kn

⊂
⋃

n∈Am
j−1(nk)

B(Kn, δm+1)

⊂
⋃

n∈Am−1
j−1 (nk+1)

B(Kn, δm)

because δm+1 < δm. Hence we obtain K ∈ Sk+1(n, δ).

Proposition 4.4.10. Let n ∈ Z, δ ∈ Y , and k ∈ Z+. If K ∈ Sk(n, δ), then

∞⋂
m=j

⋃
n∈Am

j (nk)

B(Kn, δm) ⊂
∞⋃

n=1

Kn

for all j ∈ N.

Proof. By Proposition 4.4.9 (3), we may assume that k = 0. For simplicity

we write Am
j for Am

j (n). Fix j ∈ N and take any x ∈
⋂∞

m=j

⋃
n∈Am

j
B(Kn, δm).

Seeking a contradiction, suppose that x /∈
⋃∞

n=1 Kn.

For each i ∈ N, set Ai =
⋃∞

m=i A
m
i and Li =

⋃
n∈Ai

Kn. Then we have

x ∈
∞⋂

m=j

⋃
n∈Am

j

B(Kn, δm) ⊂
∞⋂

m=j

B(Lj, δm) = Lj,

which allows us to define i0 as the minimum i ∈ N with x ∈ Li.

If i0 = 1, then A1 = [n1] and x ∈ L1 =
⋃n1

n=1 Kn, contradicting our assump-

tion that x /∈
⋃∞

n=1 Kn. Thus i0 ≥ 2.

For each m ∈ N, take xm ∈
⋃

n∈Ai0
Kn with |xm−x| < 1/m and choose km ∈

Ai0 with xm ∈ Kkm . If there exists k ∈ N such that km = k for infinitely many

m ∈ N, then x = limm→∞ xm ∈ Kk, contradicting our assumption; therefore

such k does not exist. Consequently, for each i ≥ i0, we may take mi ∈ N with

kmi
/∈ Ai

i0
, and we may assume that mi0 < mi0+1 < · · · → ∞. Then for each
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i ≥ i0 we have

xmi
∈ Kkmi

⊂
⋃

n∈Ai0
\Ai

i0

Kn =
∞⋃

l=i+1

⋃
n∈Al

i0
\Al−1

i0

Kn

⊂
∞⋃

l=i+1

⋃
n∈Al−1

i0−1

B(Kn, δl) ⊂
∞⋃

l=i+1

⋃
n∈Al−1

i0−1

B(Kn, δi+1)

⊂
⋃

n∈Ai0−1

B(Kn, δi+1) ⊂ B(Li0−1, δi+1),

keeping in mind that K ∈ S0(n, δ) and δ ∈ Y . It follows that

x ∈
∞⋂

i=i0

B(Li0−1, δi+1 + 1/mi) = Li0−1,

which violates the minimality of i0. This completes the proof.

Definition 4.4.11. For k ∈ Z+, we define Yk as the set of all

(K, f, n, δ,a, b) ∈ KN × C(I) × Z × Y × X × X

such that K ∈ Sk(n, δ) and

N(f, aj) ⊂
⋃

n∈Am
j (nk)

B(Kn, δm),
⋃

n∈Am
j (n)

Kn ⊂ B
(
N(f, bj), δm

)
whenever j ≤ m. Set Y =

⋃∞
k=0 Yk and write X for the projection of Y to

KN × C(I).

Remark 4.4.12. Note the difference between the subscripts of the two unions

above.

Proposition 4.4.13. We have Yk ⊂ Yk+1 for all k ∈ Z+.

Proof. Thanks to Proposition 4.4.9 (4), it suffices to prove that⋃
n∈Am+1

j (nk)

B(Kn, δm+1) ⊂
⋃

n∈Am
j (nk+1)

B(Kn, δm)
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whenever K ∈ KN, n ∈ Z, δ ∈ Y , and j ≤ m. Proposition 4.4.9 (2) shows that⋃
n∈Am

j (nk+1)

B(Kn, δm) ⊃
⋃

n∈Am+1
j (nk)

B(Kn, δm)

⊃
⋃

n∈Am+1
j (nk)

B(Kn, δm+1)

because δm > δm+1.

Proposition 4.4.14. If (K, f) ∈ X , then
⋃∞

n=1 Kn = N(f).

Proof. Take n ∈ Z, δ ∈ Y , a, b ∈ X, and k ∈ Z+ so that (K, f, n, δ,a, b) ∈ Yk.

Firstly, we prove that
⋃∞

n=1 Kn ⊂ N(f). Since

nj⋃
n=1

Kn =
∞⋂

m=j

⋃
n∈Am

j (n)

Kn ⊂
∞⋂

m=j

B
(
N(f, bj), δm

)
= N(f, bj)

for every j ∈ N, we have

∞⋃
n=1

Kn =
∞⋃

j=1

nj⋃
n=1

Kn ⊂
∞⋃

j=1

N(f, bj) = N(f).

Secondly, we prove that N(f) ⊂
⋃∞

n=1 Kn. For every j ∈ N, the definition of

Yk and Proposition 4.4.10 show that

N(f, aj) ⊂
∞⋂

m=j

⋃
n∈Am

j (nk)

B(Kn, δm) ⊂
∞⋃

n=1

Kn.

It follows that

N(f) =
∞⋃

j=1

N(f, aj) ⊂
∞⋃

n=1

Kn.

Lemma 4.4.15. Let n ∈ Z, and suppose that a permutation σ on N and k ∈ N

satisfy σ(n) = n for all n > nk. Then we have the following :

(1) Am
j (nk) is invariant under σ whenever j ≤ m;

(2) σ
(
Am

j (n)
)
⊂ A

max{m,k}
max{j,k} (n) whenever j ≤ m.
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Proof. Note that every subset of N that contains [nk] is invariant under σ.

(1) The assertion follows from the observation that

Am
j (nk) ⊃ [nk

j ] = [nj+k] ⊃ [nk].

(2) If k ≤ j, then Am
j (n) ⊃ [nj] ⊃ [nk] and so σ

(
Am

j (n)
)

= Am
j (n). If

j < k ≤ m, then σ
(
Am

j (n)
)
⊂ σ

(
Am

k (n)
)

= Am
k (n). If m < k, then

σ
(
Am

j (n)
)
⊂ σ([nm]) ⊂ σ([nk]) = [nk] = Ak

k(n).

Proposition 4.4.16. If f ∈ C(I), then {K ∈ KN | (K, f) ∈ X } is invariant

under finite permutations.

Proof. Suppose that K belongs to the set and that σ is a permutation on N

that fixes all but finitely many positive integers. Define K ′ ∈ KN by setting

K ′
n = Kσ(n) for n ∈ N. We need to prove that (K ′, f) ∈ X .

Take n ∈ Z, δ ∈ Y , a, b ∈ X, and k ∈ Z+ so that (K, f, n, δ, a, b) ∈ Yk.

By Proposition 4.4.13, we may assume that k is so large that σ(n) = n for all

n > nk.

By Lemma 4.4.15 (1), it is easy to see that K ′ ∈ Sk(n, δ) and that N(f, aj) ⊂⋃
n∈Am

j (nk) B(K ′
n, δm) whenever j ≤ m.

Now define b′ ∈ X by setting b′j = bj+k for j ∈ N. Then for j,m ∈ N with

j ≤ m, Lemma 4.4.15 (2) shows that⋃
n∈Am

j (n)

K ′
n ⊂

⋃
n∈A

max{m,k}
max{j,k} (n)

Kn ⊂ B
(
N(f, bmax{j,k}), δmax{m,k}

)
⊂ B

(
N(f, b′j), δm

)
because bmax{j,k} ≤ bj+k = b′j and δmax{m,k} ≤ δm.

Hence we have shown that (K ′, f, n, δ, a, b′) ∈ Yk, from which it follows

that (K ′, f) ∈ X .

Proposition 4.4.17. The set X is an analytic subset of KN × C(I).
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Remark 4.4.18. For the following proof, tilde ˜does not have its usual meaning

and is not related to hat ˆ or check ˇ in the usual way.

Proof (of Proposition 4.4.17). Let pr : KN×C(I)×Z×Y ×X×X −→ KN×C(I)

be the projection. It suffices to prove that pr Yk = pr Y k for every k ∈ Z+,

because it will imply that

X = pr Y = pr

(
∞⋃

k=0

Yk

)
=

∞⋃
k=0

pr Yk =
∞⋃

k=0

pr Y k,

from which it follows that X is analytic.

Let k ∈ Z+. We only need to prove that pr Y k ⊂ pr Yk, so let (K, f) ∈ pr Y k

be given. Take n ∈ Z, δ ∈ Y , a, b ∈ X with (K, f, n, δ,a, b) ∈ Y k. Choosing

δ′ ∈ Y , a′, b′ ∈ X so that δ′j > δj, a′
j < aj, b′j > bj for all j ∈ N, we shall show

that (K, f, n, δ′,a′, b′) ∈ Yk; it will imply that (K, f) ∈ pr Yk, completing the

proof.

Firstly, we show that K ∈ Sk(n, δ′). Fix any j0, m0 ∈ N with 2 ≤ j0 ≤

m0 − 1. Take ε > 0 with ε < δ′m0
− δm0 . Since (K, f, n, δ,a, b) ∈ Y k, we may

find (K̃, f̃ , ñ, δ̃, ã, b̃) ∈ Yk such that

• d(K̃n, Kn) < ε/2 for n ∈ [nm0+k];

• ñj = nj for j ∈ [m0 + k];

• ε < δ′m0
− δ̃m0 .

We write Am
j = Am

j (nk) and Ãm
j = Am

j (ñk) for simplicity. Observe that

Ãm0
j0

\ Ãm0−1
j0

= Am0
j0

\ Am0−1
j0

, Ãm0−1
j0−1 = Am0−1

j0−1 ,

and that if n belongs to either of these sets, then d(K̃n, Kn) < ε/2. Accordingly,
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we have ⋃
n∈A

m0
j0

\Am0−1
j0

Kn ⊂
⋃

n∈A
m0
j0

\Am0−1
j0

B(K̃n, ε/2) =
⋃

n∈Ã
m0
j0

\Ãm0−1
j0

B(K̃n, ε/2)

⊂
⋃

n∈Ã
m0−1
j0−1

B(K̃n, δ̃m0 + ε/2) =
⋃

n∈A
m0−1
j0−1

B(K̃n, δ̃m0 + ε/2)

⊂
⋃

n∈A
m0−1
j0−1

B(Kn, δ̃m0 + ε) ⊂
⋃

n∈A
m0−1
j0−1

B(Kn, δ′m0
).

Hence we obtain K ∈ Sk(n, δ′).

Now what remains to be shown is that if j0 ≤ m0, then

N(f, a′
j0

) ⊂
⋃

n∈A
m0
j0

(nk)

B(Kn, δ′m0
),

⋃
n∈A

m0
j0

(n)

Kn ⊂ B
(
N(f, b′j0), δ

′
m0

)
.

Fix such j0 and m0, and take ε > 0 with ε < δ′m0
−δm0 . Since (K, f, n, δ,a, b) ∈

Y k, we may find (K̃, f̃ , ñ, δ̃, ã, b̃) ∈ Yk such that

• d(K̃n, Kn) < ε/2 for n ∈ [nm0+k];

• ñj = nj for j ∈ [m0 + k];

• ε < δ′m0
− δ̃m0 ;

• a′
j0

< ãj0 and b′j0 > b̃j0 ;

• N(f, a′
j0

) ⊂ B
(
N(f̃ , ãj0), ε/2

)
and N(f̃ , b̃j0) ⊂ B

(
N(f, b′j0), ε/2

)
, which

can be established because of Proposition 4.3.8.

Observe that

Am0
j0

(ñk) = Am0
j0

(nk), Am0
j0

(ñ) = Am0
j0

(n),

and that if n belongs to either of these sets, then d(K̃n, Kn) < ε/2. Accordingly,
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we have

N(f, a′
j0

) ⊂ B
(
N(f̃ , ãj0), ε/2

)
⊂

⋃
n∈A

m0
j0

(ñk)

B(K̃n, δ̃m0 + ε/2)

=
⋃

n∈A
m0
j0

(nk)

B(K̃n, δ̃m0 + ε/2) ⊂
⋃

n∈A
m0
j0

(nk)

B(Kn, δ̃m0 + ε)

⊂
⋃

n∈A
m0
j0

(nk)

B(Kn, δ
′
m0

)

and ⋃
n∈A

m0
j0

(n)

Kn ⊂
⋃

n∈A
m0
j0

(n)

B(K̃n, ε/2) =
⋃

n∈A
m0
j0

(ñ)

B(K̃n, ε/2)

⊂ B
(
N(f̃ , b̃j0), δ̃m0 + ε/2

)
⊂ B

(
N(f, b′j0), δ̃m0 + ε

)
⊂ B

(
N(f, b′j0), δ

′
m0

)
.

4.4.3 Key Proposition

We reduce the main theorem (Theorem 4.1.2 or equivalently Theorem 4.3.7) to

a proposition, which we shall refer to as Key Proposition.

Proposition 4.4.19 (Key Proposition). If A is a residual subset of KN,

then a typical function f ∈ C(I) has the property that (K, f) ∈ X for some

K ∈ A .

The proof of the key proposition will be given in the next section; here we

only show that it implies the main theorem.

Proposition 4.4.20. The key proposition implies the main theorem. That is

to say, if the key proposition is true, then a subfamily F of Fσ is residual if and

only if N(f) ∈ F for a typical function f ∈ C(I).

Proof. Suppose first that F is residual. Then the key proposition applied to

A = {K ∈ KN |
⋃∞

n=1 Kn ∈ F} tells us that a typical function f ∈ C(I) has
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the property that (K, f) ∈ X for some K ∈ A , which implies that N(f) =⋃∞
n=1 Kn ∈ F by Proposition 4.4.14.

Conversely, suppose that a typical function f ∈ C(I) has the property that

N(f) ∈ F . Then we may take a dense Gδ subset G of C(I) contained in {f ∈

C(I) | N(f) ∈ F}. Write A for the set of all K ∈ KN such that (K, f) ∈ X for

some f ∈ G. Observe that A is invariant under finite permutations because it is

a union of sets invariant under finite permutations by Proposition 4.4.16. Since

A is the projection of X ∩ (KN ×G) to KN, Propositions 2.3.5 and 4.4.17 show

that A is analytic. It follows from Theorem 2.3.8 that A has the Baire property.

Therefore Proposition 4.4.4 implies that A is either meagre or residual. If A is

meagre, then the key proposition applied to A c and the residuality of G imply

that (K, f) ∈ X for some f ∈ G and K ∈ A c, which contradicts the definition

of A . Hence A is residual. This completes the proof because if K ∈ A , then

for some f ∈ G we have
⋃∞

n=1 Kn = N(f) ∈ F by Proposition 4.4.14.

In terms of the Banach-Mazur game, we can rephrase the key proposition in

the following form:

Proposition 4.4.21 (Key Proposition). If A is a residual subset of KN and

S = {f ∈ C(I) | (K, f) ∈ X for some K ∈ A },

then the
(
C(I), S,B

)
-Banach-Mazur game admits a winning strategy for Player II,

where B is the family of all open balls in C(I) whose centres are C1 functions.

4.5 Proof of the key proposition

This section will be devoted to the proof of the key proposition (Proposi-

tion 4.4.21). The reader may wish to look at the outline of the proof in Sec-

tion 4.6 before reading the detailed proof in the present section.
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4.5.1 Introduction to the strategy

Let A be a residual subset of KN, and take open dense subsets Um of KN for

m ∈ N so that
⋂∞

m=1 Um ⊂ A . Define S as in Proposition 4.4.21.

We shall use two sequences of positive numbers aj and bj, and their cousins

am,k
j and bm,k

j . The numbers aj are defined by aj = j for j ∈ N, and the numbers

am,k
j , where j ≤ m and k ∈ [4], are chosen to satisfy

aj+1 = j + 1 > aj,1
j > aj,2

j > aj,3
j > aj,4

j

= aj+1,1
j > aj+1,2

j > aj+1,3
j > aj+1,4

j

= · · ·

→ aj = j

(for example, am,k
j = j + 2−(3m+k)). The numbers bj are defined in the strategy,

each bj being determined in the jth round, and they satisfy bj < bj+1 and

bj > j + 2 for all j ∈ N. As soon as each bj is determined, the numbers bm,k
j for

m ≥ j and k ∈ [3] are chosen to satisfy

j + 1 < bj − 1 < bj,1
j < bj,2

j < bj,3
j

= bj+1,1
j < bj+1,2

j < bj+1,3
j

= · · ·

→ bj

(for example, bm,k
j = bj − 2−(2m+k)). Note that am,k

j < j + 1 < bm′,k′

j for all j, m,

m′, k, k′.

The moves of Players I and II in the mth round will be denoted by B(fm, αm)

and B(gm, βm) respectively. By the rule of the game, the functions fm and gm

are all continuously differentiable. In the mth round, Player II will construct,

in addition to gm and βm, the following: a positive number hm, a positive

number µm, finite subsets L̃m
n of I, a sequence Km ∈ KN (and its partition

Km
n = K̂m

n ⨿ Ǩm
n ), a positive integer nm, a positive number wm, and a positive

number bm (as mentioned above). They will be chosen to satisfy a number of
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properties, but the following, written as (⋆m) afterwards, is essential to ensure

that the induction proceeds: if f ∈ B(gm, βm), then

• Ñ(f, am,4
j ) ⊂

⋃
n∈Am

j
B(K̃m

n , wm),

•
⋃

n∈Am
j

K̃m
n ⊂ B

(
Ñ(f, bm,3

j ), wm

)
,

• Ñ(f, am,4
j ) ∩

⋃
n∈[nm]\Am

j
B(K̃m

n , wm) = ∅

for every j ∈ [m]. Here Am
j = Am

j (n), where n = (nm) is the sequence of

positive integers whose mth term will be defined in the mth round by Player II.

We must be careful exactly when Am
j will be determined; it is true that the

whole sequence n will be determined only after the game is over, but since Am
j

depends only on nk for k ∈ [max{j,m − 1}], we can use Am
j once nmax{j,m−1} is

determined.

4.5.2 First round

Suppose that Player I has given his first move B(f1, α1).

Construction of h1, µ1, L1
n, K1, n1, and w1

Take h1 > 0 with h1 < α1, and set µ1 = µ(f1, a
1,3
1 , a1,2

1 , h1) (recall Defini-

tion 4.3.18). Put L̃1
n = I for every n ∈ N. There exists K1 ∈ U1 ∩ D such

that we may partition K1
1 as K1

1 = K̂1
1 ⨿ Ǩ1

1 in such a way that B(K̃1
1 , µ1) = I.

Choose n1 ∈ N and w1 > 0 so that U(K1, n1, 2w1) ⊂ U1; make w1 smaller, if

necessary, so that the balls B(x,w1) for x ∈
⋃n1

n=1 K1
n are disjoint.

Construction of g1 and b1

Let φ1 be a bump function of height h1 and width w1 located at K̂1
1 and Ǩ1

1 .

Define g1 = f1 +φ1. It is clear that g1 ∈ B(f1, α1). Since µ1 = µ(f1, a
1,3
1 , a1,2

1 , h1)

and B(K̃1
1 , µ1) = I, Proposition 4.3.17 shows that

Ñ(g1, a
1,3
1 ) ⊂ Ñ(f1, a

1,2
1 ) ∩ B(K̃1

1 , w1) ⊂ B(K̃1
1 , w1) ⊂

n1⋃
n=1

B(K̃1
n, w1).
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Let b1 > 3 be so large that b1,2
1 ≥ ∥g′

1∥. Then Ñ(g1, b
1,2
1 ) = I ⊃

⋃n1

n=1 K̃1
n.

Since A1
1 = [n1], we have

• Ñ(g1, a
1,3
1 ) ⊂

⋃
n∈A1

1
B(K̃1

n, w1);

•
⋃

n∈A1
1
K̃1

n ⊂ Ñ(g1, b
1,2
1 ).

Construction of β1

We may find ε1 > 0 such that

• Ñ(g1, a
1,3
1 ) ⊂

⋃
n∈A1

1
B(K̃1

n, w1 − ε1).

By Proposition 4.3.8, there exists β1 > 0 with B(g1, β1) ⊂ B(f1, α1) such that

whenever f ∈ B(g1, β1), we have

• Ñ(f, a1,4
1 ) ⊂ B

(
Ñ(g1, a

1,3
1 ), ε1

)
;

• Ñ(g1, b
1,2
1 ) ⊂ B

(
Ñ(f, b1,3

1 ), w1

)
.

It follows that whenever f ∈ B(g1, β1), we have

• Ñ(f, a1,4
1 ) ⊂

⋃
n∈A1

1
B(K̃1

n, w1);

•
⋃

n∈A1
1
K̃1

n ⊂ B
(
Ñ(f, b1,3

1 ), w1

)
;

• Ñ(f, a1,4
1 ) ∩

⋃
n∈[n1]\A1

1
B(K̃1

n, w1) = ∅,

the last condition being trivial because [n1] \ A1
1 = ∅. Therefore (⋆1) has been

established.

4.5.3 mth round for m ≥ 2

Let m ≥ 2 and suppose that Player I has given his mth move B(fm, αm). Since

the rule of the Banach-Mazur game requires that fm ∈ B(gm−1, βm−1), it follows

from (⋆m−1) that

• Ñ(fm, am,1
j ) ⊂

⋃
n∈Am−1

j
B(K̃m−1

n , wm−1),

•
⋃

n∈Am−1
j

K̃m−1
n ⊂ B

(
Ñ(fm, bm,1

j ), wm−1

)
,
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• Ñ(fm, am,1
j ) ∩

⋃
n∈[nm−1]\Am−1

j
B(K̃m−1

n , wm−1) = ∅

for every j ∈ [m − 1] (remember that am−1,4
j = am,1

j and bm−1,3
j = bm,1

j ).

Construction of hm and µm

Take hm > 0 with hm < αm, and set

µm = min
j∈[m]

µ(fm, am,3
j , am,2

j , hm) > 0.

Construction of Lm
n

Choosing an auxiliary number ζm > 0 so that

• Ñ(fm, am,1
j ) ⊂

⋃
n∈Am−1

j
B(K̃m−1

n , wm−1 − ζm) for j ∈ [m − 1],

we shall define finite subsets L̃m
n of I for n ∈ [nm−1 + m − 1].

Firstly, let n ∈ [nm−1] and take the minimum j ∈ [m − 1] with n ∈ Am−1
j .

When x varies in Ñ(fm, bm,1
j ) ∩ B(K̃m−1

n , wm−1),

• the open balls B(x,wm−1) cover K̃m−1
n ;

• the open balls B(x, µm) cover Ñ(fm, am,1
j ) ∩ B(K̃m−1

n , wm−1 − ζm).

The compactness of the sets covered gives us a finite subset L̃m
n of Ñ(fm, bm,1

j )∩

B(K̃m−1
n , wm−1) such that

• B(L̃m
n , wm−1) ⊃ K̃m−1

n ;

• B(L̃m
n , µm) ⊃ Ñ(fm, am,1

j ) ∩ B(K̃m−1
n , wm−1 − ζm).

Secondly, for j ∈ [m − 1] \ {1}, we set

P̃m
j =

(
Ñ(fm, am,1

j ) \ Int Ñ(fm, am,1
j−1)

)
∩

⋃
n∈Am−1

j−1

B(K̃m−1
n , wm−1 − ζm),

and define L̃m
nm−1+j−1 as a finite subset of P̃m

j such that B(L̃m
nm−1+j−1, µm) ⊃ P̃m

j .

This defines L̃m
n for n ∈ [nm−1 + m − 2] \ [nm−1].
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Lastly, we define L̃m
nm−1+m−1 as a finite subset of I \

⋃nm−1+m−2
n=1 B(L̃m

n , µm)

such that B(L̃m
nm−1+m−1, µm) ⊃ I \

⋃nm−1+m−2
n=1 B(L̃m

n , µm).

Having defined L̃m
n for n ∈ [nm−1 + m − 1], we prove the following claim.

Remember that since n1, . . . , nm−1 have already been defined, we know Am
j for

j ∈ [m − 1].

Claim 4. We have the following:

(1) d(L̃m
n , K̃m−1

n ) < wm−1 for n ∈ [nm−1];

(2) Ñ(fm, am,1
m−1) ⊂

⋃nm−1+m−2
n=1 B(L̃m

n , µm);

(3)
⋃

n∈Am
j

L̃m
n ⊂ Ñ(fm, bm,1

j ) for j ∈ [m − 1];

(4)
⋃nm−1+m−1

n=1 B(L̃m
n , µm) = I;

(5)
⋃

n∈Am
j \Am−1

j
L̃m

n ⊂
⋃

n∈Am−1
j−1

B(L̃m
n , 2wm−1) for j ∈ [m − 1] \ {1};

(6) Ñ(fm, am,2
j ) ∩

⋃
n∈[nm−1+m−1]\Am

j
L̃m

n = ∅ for j ∈ [m − 1].

Proof. (1) Both L̃m
n ⊂ B(K̃m−1

n , wm−1) and K̃m−1
n ⊂ B(L̃m

n , wm−1) are clear

from the definition of L̃m
n .

(2) Let x ∈ Ñ(fm, am,1
m−1) and look at the minimum j ∈ [m − 1] with x ∈

Ñ(fm, am,1
j ).

If j = 1, then the definition of ζm tells us that x ∈ B(K̃m−1
n , wm−1 − ζm)

for some n ∈ Am−1
1 = [n1]; for this n, the number j taken in the definition

of L̃m
n must be 1, so

x ∈ Ñ(fm, am,1
1 ) ∩ B(K̃m−1

n , wm−1 − ζm) ⊂ B(L̃m
n , µm).

Now, suppose that j ∈ [m − 1] \ {1}. Since x ∈ Ñ(fm, am,1
j ), we may take

n ∈ Am−1
j with x ∈ B(K̃m−1

n , wm−1 − ζm). If n /∈ Am−1
j−1 , then the number

j taken in the definition of L̃m
n must be the same as our j, and so

x ∈ Ñ(fm, am,1
j ) ∩ B(K̃m−1

n , wm−1 − ζm) ⊂ B(L̃m
n , µm).
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If n ∈ Am−1
j−1 , then x ∈ P̃m

j because x /∈ Ñ(fm, am,1
j−1) ⊃ Int Ñ(fm, am,1

j−1) by

the minimality of j; therefore x ∈ B(L̃m
nm−1+j−1, µm), which implies the

required inclusion.

(3) Let x ∈
⋃

n∈Am
j

L̃m
n and take n ∈ Am

j with x ∈ L̃m
n . If n ∈ Am−1

j , then

taking the minimum i with n ∈ Am−1
i , we have

x ∈ L̃m
n ⊂ Ñ(fm, bm,1

i ) ⊂ Ñ(fm, bm,1
j ).

If n /∈ Am−1
j , then j ≥ 2 and nm−1 + 1 ≤ n ≤ nm−1 + j − 1, from which it

follows that

x ∈ L̃m
n ⊂ P̃m

n−nm−1+1 ⊂ Ñ(fm, am,1
n−nm−1+1)

⊂ Ñ(fm, am,1
j ) ⊂ Ñ(fm, bm,1

j ).

(4) Immediate from the definition of L̃nm−1+m−1.

(5) We have

⋃
n∈Am

j \Am−1
j

L̃m
n =

nm−1+j−1⋃
n=nm−1+1

L̃m
n ⊂

j⋃
k=2

P̃m
k

⊂
j⋃

k=2

⋃
n∈Am−1

k−1

B(K̃m−1
n , wm−1 − ζm)

=
⋃

n∈Am−1
j−1

B(K̃m−1
n , wm−1 − ζm)

⊂
⋃

n∈Am−1
j−1

B(L̃m
n , 2wm−1),

where the last inclusion follows from (1).

(6) We need to show that Ñ(fm, am,2
j ) ∩ L̃m

n = ∅ for n ∈ [nm−1 + m− 1] \Am
j .

There are three cases: n ∈ [nm−1] \ Am−1
j , nm−1 + j ≤ n ≤ nm−1 + m − 2,

and n = nm−1 + m − 1.

If n ∈ [nm−1] \ Am−1
j , then

Ñ(fm, am,2
j ) ∩ L̃m

n ⊂ Ñ(fm, am,1
j ) ∩ B(K̃m−1

n , wm−1) = ∅
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by (⋆m−1).

If nm−1 + j ≤ n ≤ nm−1 + m − 2, then

Ñ(fm, am,2
j ) ∩ L̃m

n ⊂ Ñ(fm, am,2
j ) ∩ P̃m

n−nm−1+1

⊂ Ñ(fm, am,2
n−nm−1

) \ Int Ñ(fm, am,1
n−nm−1

)

= ∅

because of Corollary 4.3.10.

If n = nm−1 + m − 1, then (2) implies that

Ñ(fm, am,2
j ) ∩ L̃m

n ⊂ Ñ(fm, am,1
m−1) ∩ L̃m

n

⊂
nm−1+m−2⋃

n′=1

B(L̃m
n′ , µm) ∩ L̃m

nm−1+m−1

= ∅

because of the choice of L̃m
nm−1+m−1.

Construction of Km

We shall construct a sequence Km ∈ Um ∩ D such that we may partition

Km
n = K̂m

n ⨿ Ǩm
n for each n ∈ N in such a way that the following conditions are

fulfilled:

(1) d(K̃m
n , K̃m−1

n ) < wm−1 for n ∈ [nm−1];

(3)
⋃

n∈Am
j

K̃m
n ⊂ Int Ñ(fm, bm,2

j ) for j ∈ [m − 1];

(4)
⋃nm−1+m−1

n=1 B(K̃m
n , µm) = I;

(5)
⋃

n∈Am
j \Am−1

j
K̃m

n ⊂
⋃

n∈Am−1
j−1

B(K̃m
n , 2wm−1) for j ∈ [m − 1] \ {1};

(6) Ñ(fm, am,2
j ) ∩

⋃
n∈[nm−1+m−1]\Am

j
K̃m

n = ∅ for j ∈ [m − 1]

(these are the relations of Claim 4 (1), (3), (4), (5), (6) with L̃m
n replaced by

K̃m
n and with Ñ(fm, bm,1

j ) replaced by Int Ñ(fm, bm,2
j ) in (3)).
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We note that Claim 4 (3) and Corollary 4.3.10 show that
⋃

n∈Am
j

L̃m
n ⊂

Int Ñ(fm, bm,2
j ) for j ∈ [m − 1]. Therefore, by Claim 4, if we choose disjoint

finite subsets Q̂m
1 , . . . , Q̂m

nm−1+m−1, Q̌m
1 , . . . , Q̌m

nm−1+m−1 of I so that the dis-

tances d(Q̃m
n , L̃m

n ) for n ∈ [nm−1 +m− 1] are sufficiently small, then they satisfy

the following conditions:

(1) d(Q̃m
n , K̃m−1

n ) < wm−1 for n ∈ [nm−1];

(3)
⋃

n∈Am
j

Q̃m
n ⊂ Int Ñ(fm, bm,2

j ) for j ∈ [m − 1];

(4)
⋃nm−1+m−1

n=1 B(Q̃m
n , µm) = I;

(5)
⋃

n∈Am
j \Am−1

j
Q̃m

n ⊂
⋃

n∈Am−1
j−1

B(Q̃m
n , 2wm−1) for j ∈ [m − 1] \ {1};

(6) Ñ(fm, am,2
j ) ∩

⋃
n∈[nm−1+m−1]\Am

j
Q̃m

n = ∅ for j ∈ [m − 1].

Since Km must belong to Um, we consider Km ∈ Um∩D such that the distances

d(Km
n , Q̂m

n ⨿ Q̌m
n ) for n ∈ [nm−1 + m − 1] are so small that each point in Km

n

has the unique closest point in Q̂m
n ⨿ Q̌m

n . If the distances d(Km
n , Q̂m

n ⨿ Q̌m
n ) are

sufficiently small, the sequence Km satisfies the required conditions.

Construction of nm and wm

Choose nm ∈ N and wm > 0 so that

• nm ≥ nm−1 + m − 1;

• wm < wm−1/2;

• U(Km, nm, 2wm) ⊂ Um;

• Ñ(fm, am,2
j ) ∩

⋃
n∈[nm−1+m−1]\Am

j
B(K̃m

n , wm) = ∅ for j ∈ [m − 1].

Make wm smaller, if necessary, so that

• the balls B(x,wm) for x ∈
⋃nm

n=1 Km
n are disjoint.
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Construction of gm and bm

Take a bump function φm of height hm and width wm located at
⋃nm−1+m−1

n=1 K̂m
n

and
⋃nm−1+m−1

n=1 Ǩm
n , and set gm = fm + φm.

Let bm > max{m + 2, bm−1} be so large that bm,2
m ≥ ∥g′

m∥.

Claim 5. (1) Ñ(gm, am,3
j ) ⊂

⋃
n∈Am

j
B(K̃m

n , wm) for j ∈ [m].

(2)
⋃

n∈Am
j

K̃m
n ⊂ Ñ(gm, bm,2

j ) for j ∈ [m].

(3) Ñ(gm, am,3
j ) ∩

⋃
n∈[nm]\Am

j
B(K̃m

n , wm) = ∅ for j ∈ [m].

Proof. (1) Remember the definition of µm and property (4) of Km. If j = m,

then Am
j = Am

m = [nm] and

Ñ(gm, am,3
m ) ⊂ Ñ(fm, am,2

m ) ∩
nm−1+m−1⋃

n=1

B(K̃m
n , wm)

⊂
nm−1+m−1⋃

n=1

B(K̃m
n , wm) ⊂

nm⋃
n=1

B(K̃m
n , wm).

If j ∈ [m − 1], then the choice of wm implies that

Ñ(gm, am,3
j ) ⊂ Ñ(fm, am,2

j ) ∩
nm−1+m−1⋃

n=1

B(K̃m
n , wm)

⊂
⋃

n∈Am
j

B(K̃m
n , wm).

(2) If j = m, then the choice of bm implies that

Ñ(gm, bm,2
j ) = Ñ(gm, bm,2

m ) = I ⊃
⋃

n∈Am
j

K̃m
n .

If j ∈ [m − 1], then property (3) of Km and Proposition 4.3.16 show that

⋃
n∈Am

j

K̃m
n ⊂

nm−1+m−1⋃
n=1

K̃m
n ∩ Ñ(fm, bm,2

j ) ⊂ Ñ(gm, bm,2
j ).
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(3) If j = m, then the claim is trivial because [nm] \ Am
j = ∅. If j ∈ [m − 1],

then (1) and the choice of wm show that

Ñ(gm, am,3
j ) ∩

⋃
n∈[nm]\Am

j

B(K̃m
n , wm)

⊂
⋃

n∈Am
j

B(K̃m
n , wm) ∩

⋃
n∈[nm]\Am

j

B(K̃m
n , wm) = ∅.

Construction of βm

We choose βm > 0 as in the following claim:

Claim 6. There exists βm > 0 with B(gm, βm) ⊂ B(fm, αm) such that if f ∈

B(gm, βm), then

• Ñ(f, am,4
j ) ⊂

⋃
n∈Am

j
B(K̃m

n , wm),

•
⋃

n∈Am
j

K̃m
n ⊂ B

(
Ñ(f, bm,3

j ), wm

)
,

• Ñ(f, am,4
j ) ∩

⋃
n∈[nm]\Am

j
B(K̃m

n , wm) = ∅

for every j ∈ [m].

Proof. By Claim 5, we may find εm > 0 such that

• Ñ(gm, am,3
j ) ⊂

⋃
n∈Am

j
B(K̃m

n , wm − εm),

•
⋃

n∈Am
j

K̃m
n ⊂ Ñ(gm, bm,2

j ),

• B
(
Ñ(gm, am,3

j ), εm

)
∩

⋃
n∈[nm]\Am

j
B(K̃m

n , wm) = ∅

for every j ∈ [m] (note that there is no εm in the second condition). By Propo-

sition 4.3.8, there exists βm > 0 with B(gm, βm) ⊂ B(fm, αm) such that if

f ∈ B(gm, βm), then

• Ñ(f, am,4
j ) ⊂ B

(
Ñ(gm, am,3

j ), εm

)
,

• Ñ(gm, bm,2
j ) ⊂ B

(
Ñ(f, bm,3

j ), wm

)
for every j ∈ [m]. It is easy to see that this βm satisfies the required condition.
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4.5.4 Proof that the strategy makes Player II win

Proposition 4.5.1. (1) For every n ∈ N, the sequence (Km
n )m∈N converges

in K. Denote the limit by Kn.

(2) We have d(Kn, Km
n ) ≤ 2wm whenever n ∈ [nm].

(3) The sequence K = (Kn)n∈N belongs to A .

Proof. Remember the following:

• if n ∈ [nm], then d(Km+1
n , Km

n ) < wm because d(K̃m+1
n , K̃m

n ) < wm;

• wm+1 < wm/2 and U(Km, nm, 2wm) ⊂ Um.

(1) Fix n ∈ N and denote by m0 the least positive integer with n ∈ [nm0 ].

Then, since d(Km+1
n , Km

n ) < wm for all m ≥ m0, we have, for all m and

m′ with m0 ≤ m < m′,

d(Km′

n , Km
n ) ≤

m′−1∑
k=m

d(Kk+1
n , Kk

n) <
m′−1∑
k=m

wk ≤
m′−1∑
k=m

2−(k−m)wm < 2wm.

It follows that (Km
n )m∈N is a Cauchy sequence and therefore converges.

(2) Obvious from the estimate in the proof of (1).

(3) It follows from (2) that

K ∈
∞⋂

m=1

U(Km, nm, 2wm) ⊂
∞⋂

m=1

Um ⊂ A .

Proposition 4.5.2. If f ∈
⋂∞

m=1 B(gm, βm), then

N(f, aj) ⊂
⋃

n∈Am
j

B(Kn, 3wm) and
⋃

n∈Am
j

Kn ⊂ B
(
N(f, bj), 3wm

)
whenever j ≤ m.

Proof. Suppose that j ≤ m. Then by the choice of βm (Claim 6), we have

• Ñ(f, am,4
j ) ⊂

⋃
n∈Am

j
B(K̃m

n , wm);
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•
⋃

n∈Am
j

K̃m
n ⊂ B

(
Ñ(f, bm,3

j ), wm

)
.

Taking the union for ˆ and ˇ gives

N(f, am,4
j ) ⊂

⋃
n∈Am

j

B(Km
n , wm) and

⋃
n∈Am

j

Km
n ⊂ B

(
N(f, bm,3

j ), wm

)
.

Therefore Proposition 4.5.1 (2) shows that

N(f, aj) ⊂ N(f, am,4
j ) ⊂

⋃
n∈Am

j

B(Km
n , wm) ⊂

⋃
n∈Am

j

B(Kn, 3wm),

⋃
n∈Am

j

Kn ⊂
⋃

n∈Am
j

B(Km
n , 2wm) ⊂ B

(
N(f, bm,3

j ), 3wm

)
⊂ B

(
N(f, bj), 3wm

)
.

Proposition 4.5.3. If f ∈
⋂∞

m=1 B(gm, βm), then (K, f) ∈ X .

Proof. Remember that if 2 ≤ j ≤ m − 1, then⋃
n∈Am

j \Am−1
j

K̃m
n ⊂

⋃
n∈Am−1

j−1

B(K̃m
n , 2wm−1),

and so the same inclusion holds when K̃m
n is replaced by Km

n :⋃
n∈Am

j \Am−1
j

Km
n ⊂

⋃
n∈Am−1

j−1

B(Km
n , 2wm−1).

Therefore Proposition 4.5.1 (2) shows that⋃
n∈Am

j \Am−1
j

Kn ⊂
⋃

n∈Am
j \Am−1

j

B(Km
n , 2wm) ⊂

⋃
n∈Am−1

j−1

B(Km
n , 2wm + 2wm−1)

⊂
⋃

n∈Am−1
j−1

B(Kn, 4wm + 2wm−1)

whenever 2 ≤ j ≤ m − 1. Hence if we define δ ∈ Y by δm = 4wm + 2wm−1 for

m ∈ N, then, using Proposition 4.5.2, we may conclude that

•
⋃

n∈Am
j \Am−1

j
Kn ⊂

⋃
n∈Am−1

j−1
B(Kn, δm) whenever 2 ≤ j ≤ m − 1, i.e. K ∈

S0(n, δ);
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• N(f, aj) ⊂
⋃

n∈Am
j

B(Kn, δm) whenever j ≤ m;

•
⋃

n∈Am
j

Kn ⊂ B
(
N(f, bj), δm

)
whenever j ≤ m.

It follows that (K, f, n, δ,a, b) ∈ Y0, implying that (K, f) ∈ X .

Proposition 4.5.4. We have
⋂∞

m=1 B(gm, βm) ⊂ S. Hence the strategy makes

Player II win.

Proof. Immediate from Proposition 4.5.1 (3) and Proposition 4.5.3.

This completes the proof of the key proposition (Proposition 4.4.21) and

hence the main theorem has been proved.

4.6 Outline of the proof

This section will explain the outline of the proof of the main theorem. Taking

the complexity of the strategy for the Banach-Mazur game into consideration,

the author believes that this section helps the reader to understand the proof

better, though it is technically not necessary for a mathematically complete

proof.

4.6.1 What we shall ignore here

It is not difficult to see that neither Proposition 4.3.8 nor Lemma 4.3.9 (nor

Proposition 4.3.11, which followed from the two above) holds if a = b. However,

in the strategy for the Banach-Mazur game, we used them for a and b that are

very close to each other, and assuming that they are true even when a equals b

helps us a lot to understand the outline of the proof. For this reason, we shall

make this assumption in this section, thereby ignoring the difference between

am,k
j and aj.

Note that Proposition 4.3.8 for a = b shows that the map C(I) −→ K;

f 7−→ Ñ(f, a) is continuous, whereas Lemma 4.3.9 shows that Ñ(f, a) is open if

f ∈ C1(I).
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4.6.2 Why we need the density condition and the disjoint

condition

The first observation is that if we can establish

• Ñ(gm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , wm) for j ∈ [m];

•
⋃

n∈Aj
K̃m

n ⊂ Ñ(gm, bj) for j ∈ [m]

in the mth round, where Aj is a finite subset of N not depending on m, then,

assuming gm → g and K̃m
n → K̃n as m → ∞ and looking at the limits of these

relations, we obtain

• Ñ(g, aj) ⊂
⋃

n∈Aj
K̃n for j ∈ N;

•
⋃

n∈Aj
K̃n ⊂ Ñ(g, bj) for j ∈ N.

By taking unions for j ∈ N and for ˆ and ,̌ we deduce that N(g) ⊂
⋃∞

n=1 Kn ⊂

N(g), i.e. N(g) =
⋃∞

n=1 Kn, assuming that
⋃∞

j=1 Aj = N and that Kn = K̂n∪Ǩn.

If K ∈
⋂∞

n=1 Un, then the strategy makes Player II win.

So let us try to establish

• Ñ(gm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , wm) for j ∈ [m];

•
⋃

n∈Aj
K̃m

n ⊂ Ñ(gm, bj) for j ∈ [m]

inductively. Suppose that they are true for m − 1. By making βm−1 small

enough, we may assume that fm satisfies the same relations as gm−1, i.e.

• Ñ(fm, aj) ⊂
⋃

n∈Aj
B(K̃m−1

n , wm−1) for j ∈ [m − 1];

•
⋃

n∈Aj
K̃m−1

n ⊂ Ñ(fm, bj) for j ∈ [m − 1]

because of Proposition 4.3.8. In order to establish K ∈
⋂∞

n=1 Un, we may need

to move K̃m−1
n to get K̃m

n satisfying Km ∈ Um; however, since Um is open

dense, we may assume that K̃m−1
n and K̃m

n are close enough to satisfy the same

relations, i.e.

• Ñ(fm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , wm−1) for j ∈ [m − 1];
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•
⋃

n∈Aj
K̃m

n ⊂ Ñ(fm, bj) for j ∈ [m − 1].

We are going to construct gm by adding to fm a bump function φm located

at some sets Ĥ and Ȟ. Since Proposition 4.3.16 shows that H̃ ∩ Ñ(fm, bj) ⊂

Ñ(gm, bj), we can obtain the second condition that we wish to establish, provided

that
⋃

n∈Aj
K̃m

n ⊂ H̃ for j ∈ [m − 1] (here we neglect the case j = m, which

is not too difficult to deal with). Proposition 4.3.17 helps us to obtain the first

condition, but there are two obstacles to overcome. Firstly, in order for the

proposition to be applicable, the location H̃ of the bump function φm must

satisfy the density condition

• B(H̃, µm) = I,

where µm depends on the function fm, the numbers aj, and the height of φm only.

Secondly, in order to obtain the desired relation Ñ(gm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , wm)

after getting the relation Ñ(gm, aj) ⊂ Ñ(fm, aj)∩B(H̃, wm) that the proposition

implies (wm is the width of φm), the disjoint condition

• Ñ(fm, aj) ∩
⋃

n∈Am−1\Aj
B(K̃m

n , wm) = ∅

must hold because, for the aforementioned reason, the location H̃ must be large

enough to contain
⋃

n∈Aj
K̃m

n for all j ∈ [m − 1].

4.6.3 Why we need Am
j rather than Aj

It turns out that the second obstacle in itself does not worry us very much. Let

us strengthen what we prove by induction, and try to prove

• Ñ(gm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , wm) for j ∈ [m];

•
⋃

n∈Aj
K̃m

n ⊂ Ñ(gm, bj) for j ∈ [m];

• Ñ(gm, aj) ∩
⋃

n∈Am\Aj
B(K̃m

n , wm) = ∅ for j ∈ [m]

(we changed B into B in the disjoint condition; though not essential, it makes our

life slightly easier). Assuming that they are true for m−1, we may prove the first
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and the second conditions for m as described above, if we set H̃ =
⋃

n∈Am−1
K̃m

n .

The disjoint condition follows from the first condition if we make wm so small

that the balls B(x, wm) for x ∈
⋃

n∈Am
K̃m

n are disjoint, because we always choose

finite sets as K̃m
n .

However, when we try to overcome the first obstacle as well, we face a great

trouble. Since
⋃

n∈Am−1
K̃m

n may not be large enough to satisfy the density

condition B(
⋃

n∈Am−1
K̃m

n , µm) = I, we have to add points to make H̃. Denote

by M̃ the set of added points: H̃ =
⋃

n∈Am−1
K̃m

n ∪ M̃ . In order for H̃ to satisfy

the density condition B(H̃, µm) = I, the set M̃ must satisfy

B(M̃, µm) ⊃ I \
⋃

n∈Am−1

B(K̃m
n , µm).

On the other hand, for the same reason as the necessity of the disjoint condition,

the set M̃ must satisfy Ñ(fm, aj)∩B(M̃, wm) = ∅ for j ∈ [m−1]. Since wm will

be defined later and Ñ(fm, aj) increases as j does, the condition that we should

impose on M̃ is

Ñ(fm, am−1) ∩ M̃ = ∅.

Can we choose M̃ satisfying these two conditions? Unfortunately, the an-

swer is negative for the following reason. Since µm depends on fm, which

was chosen after wm−1 was defined, it may be that µm is much smaller than

wm−1. Keeping in mind that Ñ(fm, am−1) ⊂
⋃

n∈Am−1
B(K̃m

n , wm−1) is the

only relation that we currently know, we must be prepared for the case where⋃
n∈Am−1

B(K̃m
n , µm) fails to cover Ñ(fm, am−1). It means that if we set S =

Ñ(fm, am−1) \
⋃

n∈Am−1
B(K̃m

n , µm), then S may be large; S might contain an

open interval of length 2µm, in which case there is no M̃ for which both S∩M̃ = ∅

and B(M̃, µm) ⊃ S are true. It follows that we may not be able to choose M̃

with the desired properties.

In order to sort this problem out, we try to find the sets K̃m
n that approximate

Ñ(fm, aj) better. That is to say, using the relations

• Ñ(fm, aj) ⊂
⋃

n∈Aj
B(K̃m−1

n , wm−1) for j ∈ [m − 1];
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•
⋃

n∈Aj
K̃m−1

n ⊂ Ñ(fm, bj) for j ∈ [m − 1]

that we currently know, we try to find K̃m
n such that

• Ñ(fm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , µm) for j ∈ [m − 1];

•
⋃

n∈Aj
K̃m

n ⊂ Ñ(fm, bj) for j ∈ [m − 1].

It might seem to be a good idea to define K̃m
n = Ñ(fm, aj) ∩ B(K̃m−1

n , wm−1)

if n ∈ Aj (the right-hand side is not closed, but this can be remedied easily)

because it implies that

Ñ(fm, aj) =
⋃

n∈Aj

(
Ñ(fm, aj) ∩ B(K̃m−1

n , wm−1)
)

=
⋃

n∈Aj

K̃m
n ,

⋃
n∈Aj

K̃m
n ⊂ Ñ(fm, aj) ⊂ Ñ(fm, bj)

(although we might seem to have established much better approximation be-

cause no µm appears here, we are now ignoring the requirement that Km

should belong to Um and it forces us to change K̃m
n slightly, which yields

µm). What we missed here is the fact that each n might belong to more

than one Aj; we must decide which j we should use to define K̃m
n . For ex-

ample, suppose that an integer n belongs to both A1 and A2. On the one

hand, if we define K̃m
n = Ñ(fm, a1) ∩ B(K̃m−1

n , wm−1), then K̃m
n can be too

small for
⋃

n′∈A2
B(K̃m

n′ , µm) to cover Ñ(fm, a2); on the other hand, if we define

K̃m
n = Ñ(fm, a2)∩B(K̃m−1

n , wm−1), then K̃m
n can be too large for

⋃
n′∈A1

K̃m
n′ to

be contained in Ñ(fm, b1).

What we do to solve this problem is to define K̃m
n as above with the minimum

j with n ∈ Aj, and introduce K̃m
n for n larger than maxAm−1 that will be in

charge of those bad points that belong to Ñ(fm, aj) \ Ñ(fm, aj−1) but whose

nearest point in
⋃

n∈Aj
K̃m−1

n belongs to
⋃

n∈Aj−1
K̃m−1

n , not
⋃

n∈Aj\Aj−1
K̃m−1

n .

According to this construction, the exact relation Ñ(fm, aj) ⊂
⋃

n∈Aj
B(K̃m

n , µm)

cannot be established, but if we add the large numbers n to Aj on the right-hand

side, then the inclusion becomes true; we must use Am
j rather than Aj to show

the dependence on m as well as j.
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4.6.4 What we should be careful about when using Am
j

In the way described above, we can establish the following:

• Ñ(gm, aj) ⊂
⋃

n∈Am
j

B(K̃m
n , wm) for j ∈ [m];

•
⋃

n∈Am
j

K̃m
n ⊂ Ñ(gm, bj) for j ∈ [m];

• Ñ(gm, aj) ∩
⋃

n∈Am
m\Am

j
B(K̃m

n , wm) = ∅ for j ∈ [m].

Taking unions for ˆ and ˇ in the first two relations gives

• N(gm, aj) ⊂
⋃

n∈Am
j

B(Km
n , wm) for j ∈ [m];

•
⋃

n∈Am
j

Km
n ⊂ N(gm, bj) for j ∈ [m].

We attempt to use these relations to prove that
⋃∞

n=1 Kn = N(g), where

g = limm→∞ gm, whose existence we may assume without loss of generality. It is

natural to assume that
⋃∞

j=1

⋃∞
m=j Am

j = N and that wm → 0 as m → ∞, if we

consider their roles in the strategy. Note that Am
j increases as m does because

of the construction.

The inclusion
⋃∞

n=1 Kn ⊂ N(g) can be proved easily in the following manner.

Let x ∈
⋃∞

n=1 Kn and take n ∈ N with x ∈ Kn. Since Km
n → Kn as m →

∞, we can find points xm ∈ Km
n that converge to x as m → ∞. By the

assumption
⋃∞

j=1

⋃∞
m=j Am

j = N, we may take j ∈ N with n ∈
⋃∞

m=j Am
j . Then,

for sufficiently large m, we have n ∈ Am
j and so

xm ∈ Km
n ⊂

⋃
n′∈Am

j

Km
n′ ⊂ N(gm, bj).

Since N(gm, bj) → N(g, bj) as m → ∞, it follows that

x = lim
m→∞

xm ∈ N(g, bj) ⊂ N(g).

However, the opposite inclusion N(g) ⊂
⋃∞

n=1 Kn is not so easy to prove. Let

x ∈ N(g) =
⋃∞

j=1 N(g, aj) and take j ∈ N with x ∈ N(g, aj). Since N(gm, aj) →

N(g, aj) as m → ∞, we can find points xm ∈ N(gm, aj) that converge to x as

m → ∞. For each m ≥ j, because xm ∈ N(gm, aj) ⊂
⋃

n∈Am
j

B(Km
n , wm), there
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exists nm ∈ Am
j with xm ∈ B(Km

nm
, wm); take ym ∈ Km

nm
with |xm − ym| < wm.

Since xm → x and wm → 0, we have ym → x. If there exists n ∈ N such

that nm = n for infinitely many m, then x ∈ Kn because ym ∈ Km
n for m with

nm = n, and we are done. However, if such n does not exist, i.e. if nm → ∞ as

m → ∞, then it may be that no Kn contains x.

Fortunately, we can solve this problem by looking at the properties of the sets

Km
n more closely without changing their construction. Suppose that nm → ∞ as

m → ∞. Since nm ∈ Am
j for all m, we can, for sufficiently large m, consider nm

to be added indices introduced to take care of bad points. Therefore ym ∈ Km
nm

must be close to some point in
⋃

n∈Am−1
j−1

Km−1
n , from which we may infer that x

does belong to some Kn; see Proposition 4.4.10 for details.
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