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Abstract

Since Banach and Mazurkiewicz independently proved that typical (in the
sense of Baire category) continuous functions are nowhere differentiable, the
study of the behaviour of typical continuous functions has been one of the most
popular topics in classical real analysis. Despite being less popular, it is also
interesting and important to investigate typical members of other families of
functions. The talk will look at several families in which typical functions have
small continuity points.

1 Continuity points of functions of Baire class 1

By a function we shall always mean a function from the real line R into itself.
All mathematics students are taught in their first year that a pointwise limit

of continuous functions is not necessarily continuous, as illustrated by the following
example.

Example 1.1.
Define a sequence {fn} of continuous functions by

fn(x) =

{
0 if |x| > 1/n;

1 − n|x| if |x| ≤ 1/n.

Then {fn} converges pointwise to the characteristic function of {0}, which is discon-
tinuous at 0.

Definition 1.2.
A function is said to be of Baire class 1 if it can be expressed as a pointwise limit

of continuous functions. The family of all functions of Baire class 1 will be denoted
by B1.

All continuous functions are of Baire class 1; the converse fails as we saw in Ex-
ample 1.1.
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Definition 1.3.
For each function f , we write

C(f) = {x ∈ R | f is continuous at x},
D(f) = {x ∈ R | f is not continuous at x}.

The function f ∈ B1 in Example 1.1 satisfies D(f) = {0}. We may well ask
ourselves whether a function f ∈ B1 can have much bigger D(f); for example, is
there f ∈ B1 with D(f) = R? It turns out that D(f) is topologically small for every
f ∈ B1. In order to state this proposition precisely, we need a few terms.

Definition 1.4.
Let X be a topological space and A a subset of X.
(1) We say that A is nowhere dense if Int Ā = ∅.
(2) We say that A is meagre if A can be written as a countable union of nowhere

dense sets.

Proposition 1.5 (Baire category theorem).
In a complete metric space, every meagre set has empty interior.

This proposition means that we can regard meagreness as the mathematically
rigorous concept for topological smallness in complete metric spaces. Note that it is
not the case for all topological spaces; for example, the whole space is meagre in Q,
where meagreness makes no sense.

Proposition 1.6.
If f ∈ B1, then D(f) is meagre.

Proof.
Define the oscillation osc(f, a) of f at a point a ∈ R by

osc(f, a) = inf
δ>0

sup
x,y∈(a−δ,a+δ)

|f(x) − f(y)| ∈ [0,∞],

and set Aε = {x ∈ R | osc(f, x) ≥ ε} for each ε > 0. It is easy to see that each Aε is
closed and that D(f) = {x ∈ R | osc(f, x) > 0} =

⋃∞
m=1 A1/m. Therefore it suffices to

prove that Int Aε = ∅ for all ε > 0. Suppose for a contradiction that some Aε contains
a nondegenerate closed interval I.

Take a sequence {fn} of continuous functions converging pointwise to f , and look
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at the closed set

Bn =
∞⋂

i,j=n

{
x ∈ R

∣∣ |fi(x) − fj(x)| ≤ ε/4
}

for each n ∈ N. Since I =
⋃∞

n=1(Bn ∩ I) by the pointwise convergence of {fn}, the
Baire category theorem implies that Bn ∩ I contains a nondegenerate closed interval,
say J , for some n ∈ N. For each x ∈ J , we have |fi(x) − fn(x)| ≤ ε/4 for all i ≥ n,
and so |f(x) − fn(x)| ≤ ε/4. The uniform continuity of fn on J allows us to take
δ > 0 less than half the length of J so that |fn(x) − fn(y)| ≤ ε/4 whenever x, y ∈ J
and |x − y| < 2δ.

Now let a be the midpoint of J . If x, y ∈ (a − δ, a + δ) ⊂ J , then

|f(x) − f(y)| ≤ |f(x) − fn(x)| + |fn(x) − fn(y)| + |fn(y) − f(y)| ≤ 3ε/4.

It follows that osc(f, a) ≤ 3ε/4 < ε, contradicting the fact that a ∈ J ⊂ I ⊂ Aε.

2 Continuity points of typical functions of Baire

class 1

Having proved in Section 1 that D(f) is topologically small for every f ∈ B1, we are
tempted to know whether D(f) is also measure-theoretically small, i.e. Lebesgue null,
for every f ∈ B1. Contrary to the intuition one may have, Bruckner and Petruska [BP]
proved that C(f), rather than D(f), is Lebesgue null for most f ∈ B1.

In order to define what we mean by most f ∈ B1, we need to give B1 a topology.
For ease of presentation, we restrict ourselves to bounded functions of Baire class 1
and consider

bB1 = {f ∈ B1 | f is bounded},
equipped with the supremum norm ∥f∥ = supx∈R|f(x)|.

The following proposition assures us that meagreness makes sense in bB1:

Proposition 2.1.
The space bB1 is a Banach space.

Proof.
It suffices to show that if fn ∈ B1 and fn → f uniformly, then f ∈ B1.
By taking a subsequence if necessary, we may assume that ∥fn − f∥ < 2−n for all

n ∈ N. Put gn = fn+1−fn ∈ B1 for each n ∈ N, and g = f−f1. We have g =
∑∞

n=1 gn

uniformly, and it suffices to show that g ∈ B1.
Take continuous functions {gmn}m,n∈N so that gmn → gn pointwise as m → ∞ for

each n ∈ N. Since

∥gn∥ ≤ ∥fn+1 − f∥ + ∥f − fn∥ < 2−n−1 + 2−n < 2−n+1,
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we may assume that ∥gmn∥ ≤ 2−n+1 for all m,n ∈ N by replacing gmn with

max
{
min{gmn, 2

−n+1},−2−n+1
}

if necessary.
Set hm =

∑m
n=1 gmn for each m ∈ N. We shall show that hm → g pointwise,

which implies that g ∈ B1 as required. Let x ∈ R and ε > 0 be given. Choose
M ∈ N so large that

∑∞
n=M+1 2−n+1 < ε/3, and then choose M ′ > M so large that

|gmn(x) − gn(x)| ≤ ε/3M for n = 1, . . . ,M whenever m ≥ M ′. For m ≥ M ′, we have

|hm(x) − g(x)| =

∣∣∣∣∣
m∑

n=1

gmn(x) −
∞∑

n=1

gn(x)

∣∣∣∣∣
≤

M∑
n=1

|gmn(x) − gn(x)| +
m∑

n=M+1

|gmn(x)| +
∞∑

n=M+1

|gn(x)|

≤ M · ε

3M
+

m∑
n=M+1

2−n+1 +
∞∑

n=M+1

2−n+1

< ε,

completing the proof.

Definition 2.2.
We say that a typical f ∈ bB1 has a property P , written ∀∗f ∈ bB1 P , if

{f ∈ bB1 | f does not have property P}

is meagre in bB1.

The following is the theorem of Bruckner and Petruska mentioned at the beginning
of the present section:

Theorem 2.3 ([BP, Theorem 2.4], weakened for simplicity).
A typical f ∈ bB1 has the property that C(f) is Lebesgue null.

3 Theorem of Kostyrko and Šalát, and our main

theorem

We now turn our attention from bB1 to general spaces of bounded functions. Let X
be a linear space of bounded functions, equipped with the supremum norm.
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Definition 3.1.
We say that a typical f ∈ X has a property P , written ∀∗f ∈ X P , if

{f ∈ X | f does not have property P}

is meagre in X.

Note that even when a typical f ∈ X has a property P , there does not necessarily
exist f ∈ X with the property P , since we do not assume X to be closed under
uniform convergence.

Kostyrko and Šalát [KS] investigated in which families X it is true that a typical
f ∈ X has the property that C(f) is Lebesgue null.

Theorem 3.2 ([KS, Theorem], weakened for simplicity).
If C(f) is Lebesgue null for some f ∈ X, then a typical f ∈ X has the property

that C(f) is Lebesgue null.

Our main theorem shows that the theorem above remains valid when ‘Lebesgue
null’ is replaced by ‘meagre.’

Theorem 3.3 (Main Theorem, [Sa, Theorem 1.3], weakened for simplicity).
If C(f) is meagre for some f ∈ X, then a typical f ∈ X has the property that

C(f) is meagre.
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[KS] P. Kostyrko and T. Šalát, On the structure of some function space, Real Anal.
Exch., 10 (1984–85), no. 1, 188–193.

[Sa] S. Saito, Continuity points of typical bounded functions, to appear in Real Anal.
Exch.

Shingo SAITO
Faculty of Mathematics (Engineering Building), Kyushu University,
6–10–1, Hakozaki, Higashi-ku, Fukuoka, 812–8581, Japan
http://www2.math.kyushu-u.ac.jp/∼ssaito/

ssaito@math.kyushu-u.ac.jp

5


